A Simplified Approach to A' Level

CHEMISTRY PRACTICALS

P525/3

(Chemistry Practical)

With Guiding Notes, Worked Out Examples and a Variety of Systematic Practical Exercises for Senior Five and Six on:

- → Preparation of standard solutions
- **→** Standardization of solutions
- **→** Double Indicator Titrations
- **→** *Redox Titrations*
- **→** Back Titration
- → Solubility Product
- → Partition Coefficient
- → Inorganic Qualitative Analysis
- → Organic Qualitative Analysis
- **→** Chemical Energetics
- **♦** Chemical Kinetics
- **→** Colligative Properties

FEBRUARY, 2018
Fourth Edition

MWESIGWA DAVID ATEENYI

BSC (Hons) (MUK), PGDE (KYU)

Published by JESCHO

PUBLISHING HOUSE Kampala (U), E.A.

АЗ	implified Appr	vuen w A Le	vei Chemis	iry i raciical	,

DEDICATION

I dedicate this book to my Beloved Biological Brothers and Sisters who include: Merry Baruuli Akiiki, Esther K. Yalibanda Abooki, Elijah Baruuli Amooti, Enoch Baruuli Adyeri, Stephen Magezi Ateenyi, Joseph Kirungi Abooki, Ellen Asiimwe Amooti and Joy Basemera Akiiki.

I also dedicate this book to my Beloved Paternal Uncle Paul Ngonzi Atwooki and my Brother-in-law John MwavuYalibanda Atwooki.

.

ACKNOWLEDGEMENTS

In the first place, I thank the Almighty God who has sustained me and blessed me with knowledge and the necessary experience to prepare this publication.

I wish to sincerely thank Mr. Mugumya Mesusera who was my Headmaster and Ms. Lwanga Justine who was my Deputy Headmistress in charge of Academics for having made it easier for me to attain my O' and A' Level Education at Bugema Adventist Secondary School.In a similar way, I do appreciate Mr. Mawaggali L. Noah (Senior Chemistry teacher) forhaving taught me Chemistry at Advanced Level while I was a student at the above mentioned institution. Mr. Mawaggali played a big role in making me the Chemist I am today.

In a special way, I would like to recognize Mr. Kwagala John Mary (Head of Chemistry Department, Merryland High School), Mr. Kaggwa John Bosco (Senior Chemistry Teacher, Gombe S.S.), Mr. Kafeero Hussein (Head of Chemistry Department, Kibuli S.S.), Mr. Kibonde Henry (Senior Chemistry Teacher, Seroma Christian High School-Mukono), Mr. Tutegeke Benjamin (Senior Chemistry Teacher, Merryland High School and Mandela S.S., Hoima), Mr. Bingi Patrick Nyanzi (Senior Chemistry Teacher), Ms. Nabacwa Allen (Chemistry Teacher, Merryland High School) and Ms. Lajara Caroline (Chemistry Teacher, Merryland High School) and Ms. Lajara Caroline (Chemistry Teacher, Merryland High School) whose interactive experiences with me have broadened my knowledge in the subject of Chemistry.

I wishto extend my sincere thanks to Mr. Atibuni Charles (Head of Chemistry Department, Uganda Martyrs' S.S., Namugongo) for having proofread my manuscript.

I also extend my sincere thanks to Professor Lawrence Bategeka (Director, Mandela S.S., Hoima), Dr. Dalton Ssegawa (Director, Merryland High School),Mr. Mbabazi Moses (Director, Hillside College, Mityana), Mr. Mukiibi Drake (Headmaster, Merryland High School-Entebbe, Kigungu Campus), Mr. Mbeyi Jimmy Kitooke (Director of Studies, Merryland High School-Entebbe, Kigungu Campus), Mr. Kanyike Samuel(Headmaster, Merryland High School-Entebbe, Katabi Campus), Dr. John Wasswa (Chemistry Lecturer, Makerere University) and Mr. Oundo Sylvester (Headmaster, Nile High School-Mukono) for the role they have played in facilitating my professional growth. I further extend my appreciation to Mrs.ByaruhangaCaroline Nantume (Senior Chemistry Teacher, Entebbe Comprehensive High School), Mr. TumukugizeGodwish (Head of Chemistry Department and Director of Studies, Mandela S.S., Hoima), Mr. Kiiza Ali (Senior Chemistry Teacher, St. Peter's High School, Hoima), Mr. Mukisa John (Senior Chemistry Teacher, St. Kirigwajjo S.S., Karuguuza-Kibaale) and Mr. Alema Ddawa Richard (Head of Chemistry Department, Arua Public Secondary School) for their tremendous support.

Great thanks go to Mr. Kamya David (Science Lab Technician, Merryland High School-Entebbe), Mr. Wakhiya Justus (Science Lab Technician, Kibuli S.S.) and Mr. Oketch Dominic Ogola (Energy Technician, Petroleum Department, Ministry of Energy and Mineral Development-Uganda) for their technical assistance. In a similar way, I would like to appreciate my former student, Mr. Ariho Gilbert who worked hand in hand with me in the process of verifying the experiments in this book.

I do acknowledge Mr. Nsubuga Mustafa, Mr. Sebunnya Eric, Mr. Kizito Gerald, Mr. Settabi Joshua, Mr. Muwaya Ibrahim, Mr. ObonyoBoscoand Mr. Kasozi Dennis for their moral support.

Special thanks go to Ms Nakijoba Jane Mildred Amooti for her support and encouragement which made it easier for me to put this piece of work together.

I also appreciate all Chemistry teachers who have appreciated this book and recommended it to their students. My appreciation also goes to all my Chemistry students, both the past and present since my interactive experiences with them have given me the potential to write this manuscript. In a similar way, I would like to sincerely thank Mr. Mungati Enoch and Ms. Kilande Lydia of JESCHO PUBLISHING HOUSE-KAMPALA for their quality printing services.

May God bless you all abundantly.

PREFACE TO FOURTH EDITION

A Simplified Approach to A' Level Chemistry Practicalshas been specially designed to meet the requirements of students being prepared for the A' Level Chemistry Practical Examination. The book will also be extremely relevant to Chemistry teachers whose dream is to acquire experience in teaching the Chemistry Practical Paper at A' Level.

The publication is composed of guiding notes at the beginning of every chapter, worked out examples and practical exercises which have been arranged systematically from simpler to more complex ones, all of which are precisely in line with the most current UNEB Syllabus for the A' Level Chemistry Practical Paper (P525/3). The book covers areas of: Preparation of Standard solutions, Standardization of solutions, Double Indicator titrations, Redox Titrations, Back Titration, Solubility Product, Partition Coefficient, Inorganic Qualitative Analysis, Organic Qualitative Analysis, Chemical Energetics, Chemical Kinetics and Colligative Properties. The author has particularly prepared the practical exercises taking into account, the most recent techniques in setting the A' Level Chemistry Practical Questions, making it theBest Chemistry Practical Workbook that each Secondary School should acquire for use by Senior Five and Senior Six students.

This book will also be useful in teaching A' Level Chemistry Practicals throughout East Africa.

The approach used by the author makes the book much more user friendly to both students and teachers than any other previous publication. The language and arrangement of content in the notes, worked out examples and particularly in the procedures of the practical exercises/experiments is the kind that is easily interpreted and understood by students.

Another unique property of this publication is the **Teacher'sPreparation Manual** that will be availed to every institution that will choose this book for its A' Level students. The Teacher's preparation manual contains the confidential information for all the experiments in the twelve chapters of the book. This will simplify the work of the Chemistry Teachers which will ultimately save on the time that would be wasted in preparing for the practical lessons.

This book is therefore intended for any School and Chemistry Teacher whose aim is to have excellent students in the A' Level Chemistry Practical Paper after all success comes to those who utilize all the opportunities available (such as the opportunity to utilize this book), so as to reach their full potential.

COPYRIGHT: MWESIGWA DAVID ATEENYI 2018

All rights reserved. No part of this book should be reproduced, stored in a retrieval system or transmitted in any form or by any means whether electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the author. Doing otherwise will result in prosecution in the Courts of Law.

Tel.: +256785927262, +256 753048763 E-mail: mwesigwadave2017@gmail.com

TABLE OF CONTENTS

ii
iv
V
1
1
1
1
1
2
4
4
d
6
8
12
14
14
14
14
14
15
15
17
nent
.24
24
.24
.24

Worked out example 3.1.1.1	24
Worked out example 3.1.1.2.	
3.1.2 Experiments on Simple mixtures	27
Experiment 3.1.2.1	27
Experiment 3.1.2.2.	28
3.2Complex Mixtures	
3.3 Double Indicator Titrations	
3.3.1 Worked out Examples on Double Indicator Titrations using	g the
Continuous Method (The Two Indicators used concurrently)	34
Worked out example 3.3.1.1.	
Worked out example 3.3.1.2.	36
Worked out example 3.3.1.3.	38
3.3.2 Practical Exercises on Double Indicator Titrations using t Continuous Method (The Two Indicators used concurrently)	
Experiment 3.3.2.1	
Experiment 3.3.2.2.	
Experiment 3.3.2.3.	
Experiment 3.3.2.4.	
Experiment 3.3.2.5.	
3.3.3Worked out Examples on Double Indicator Titrations using	
Two Step Method(The Two Indicators used separately)	_
Worked out example 3.3.3.1	
Worked out example 3.3.3.2.	
Worked out example 3.3.3.3	
Two Step Method (The Two Indicators used separately)	
Experiment 3.3.4.1	
Experiment3.3.4.2.	
Experiment3.3.4.3.	
Experiment 3.3.4.4	
Experiment 3.3.4.5	
Experiment 3 3 4 6	67

CHAPTE	R FOUR	69
4.0 RED0	OX TITRATIONS	69
4.1 Intro	oduction	69
4.1.1	Terms commonly used in redox reactions	69
4.1.2	Common oxidizing agents	70
4.1.3	Half equations of common oxidizing agents	70
	Common Reducing Agents	
4.1.5	Half equations of common Reducing Agents	71
4.2 Cate	egories ofRedox Titrations	71
4.2.1 I	Redox reactions involving Acidified Potassium man	nganate(VII)
Soluti	on	71
4.2.2 1	Redox reactions involving acidified potassium dich	romate(VI)
solutio	on	74
4.3 Titratio	ons involving acidified potassium manganate(VII) s	solution75
	Worked out Examples on titrations involving acidit	
mang	ganate(VII)solution	75
Wo	orked out example 4.3.1.1	75
Wo	orked out example 4.3.1.2	77
	orked out example	
	3.1.379Wo	rked out example
	3.1.4	(7.777)
	Practical Exercises involving acidified potassium m	` ,
solutio	on	84
-	periment 4.3.2.1	
Exp	periment 4.3.2.2.	86
Exp	periment 4.3.2.3	88
Exp	periment 4.3.2.4	91
Exp	periment 4.3.2.5	93
Exp	periment 4.3.2.6	96
Exp	periment 4.3.2.7	97
4.4 Titra	ations involving Iodine solution and Sodium thiosu	lphate solution
(Ioc	limetry and Iodometry Titrations)	100
4.4.1 V	Worked out Examples on Iodimetry and Iodometry	Titrations 102

Worked out example 4.4.1.1	102
Worked out example 4.4.1.2	103
Worked out example 4.4.1.3	106
Worked out example 4.4.1.4	109
4.4.2Practical Exercises on Iodimetry and Iodometry	
Titrations	111
Experiment 4.4.2.1	111
Experiment4.4.2.2.	
Experiment 4.4.2.3.	
Experiment 4.4.2.4. Experiment 4.4.2.5.	
Experiment 4.4.2.6.	
Experiment 4.4.2.7.	
Experiment 4.4.2.8.	128
CHAPTER FIVE	131
5.0 BACK TITRATION	
5.1 Introduction	
5.1.1 Stages followed in calculations of Back Titration	
5.1.2 Applications of Back Titration	
5.2 Worked out Examples on Back Titration	
Worked out example 5.2.1	
Worked out example 5.2.2	133
Worked out example 5.2.3	136
5.3 Practical Exercises on Back Titration	139
Experiment 5.3.1	139
Experiment 5.3.2.	141
Experiment 5.3.3	144
Experiment 5.3.4.	147
Experiment 5.3.5.	150
Experiment 5.3.6.	153
Experiment 5.3.7.	156
CHADTED CIV	1//
CHAPTER SIX	
6.0 SOLUBILITY PRODUCT	
6.1 Introduction6.2 Worked out Examples on the Solubility Product	
0.2 Worked out Dampies on the boldonity Houdet	1 00

Worked out Example 6.2.1	160
6.3 Practical Exercises on the Solubility Product	162
Practical exercise 6.3.1.	
Practical exercise 6.3.2.	164
CHAPTER SEVEN	167
7.0 THE PARTITION COEFFICIENT	167
7.1 Introduction	167
7.2 Worked out Examples on the Partition coefficient. Worked out example 7.2.1.	
7.3 Practical Exercises on the Partition Coefficient	169
Practical exercise 7.3.1	
Practical exercise 7.3.2.	171
CHAPTER EIGHT	175
8.0 INORGANIC QUALITATIVE ANALYSIS	175
8.1 INTRODUCTION	175
8.1.1 Cations	175
8.1.2 Anions	175
8.2 PRELIMINARY TESTS AND CONFIRMATORY TESTS	176
8.2.1 Physical appearance of solids	176
8.2.2 Soluble and Insoluble salts	177
8.2.3 Solutions formed by Soluble and Insoluble salts	177
8.2.4 Action of heat on unknown solids	178
8.3 DETECTION OF CATIONS AND ANIONS IN SOLIDS AND	
SOLUTIONS	180
8.3.1 Reagents used in the identification of Cations in solids and	
solutions	180
8.3.1.1 The "Just Acidic" Concept	192
8.3.2 Reagents used for identification of Anions in Solids and solution using specific	itions
reagents	198
8.3.3 Rules followed while answering Inorganic Qualitative Analy	
Questions	215
8.4 Worked out Examples on Inorganic Qualitative Analysis	217

Worked out example 8.4.1	217
Worked out example 8.4.2	219
Worked out example 8.4.3	221
8.5 Practical Exercises on Inorganic Qualitative Analysis	223
Experiment 8.5.1	
Experiment 8.5.2	
Experiment 8.5.3	
Experiment 8.5.4.	228
Experiment 8.5.5.	
Experiment 8.5.6.	
Experiment 8.5.7.	
Experiment 8.5.8.	
Experiment 8.5.9.	
Experiment 8.5.10.	
Experiment 8.5.11	
Experiment 8.5.12.	
Experiment 8.5.13.	
Experiment 8.5.14.	
Experiment 8.5.15.	
Experiment 8.5.16 Experiment 8.5.17	
Experiment 8.5.17	
Experiment 8.5.19.	
Experiment 8.5.20.	
CHADTED NINE	260
CHAPTER NINE	
9.0 ORGANIC QUALITATIVE ANALYSIS	
9.1 INTRODUCTION	
9.1.1 Key Aims of analyzing Organic Compounds	
9.2 PRELIMINARY TESTS	
9.2.1 Physical appearance of the Compound	
9.2.2 The Odour /Smell of an Organic Compound	261
9.2.3 The Flame Test	261
	262
9.2.4 Solubility in water	
9.2.4 Solubility in water	263
9.2.5 Use of Indicators	
9.2.5 Use of Indicators	
9.2.5 Use of Indicators.9.3 REAGENTS USED TO TEST FOR ORGANIC COMPOUNDS9.4 WORKED OUT EXAMPLES ON ORGANIC QUALITATIVE	263
9.2.5 Use of Indicators.9.3 REAGENTS USED TO TEST FOR ORGANIC COMPOUNDS9.4 WORKED OUT EXAMPLES ON ORGANIC QUALITATIVE ANALYSIS.	263
9.2.5 Use of Indicators.9.3 REAGENTS USED TO TEST FOR ORGANIC COMPOUNDS9.4 WORKED OUT EXAMPLES ON ORGANIC QUALITATIVE	263 278
 9.2.5 Use of Indicators. 9.3 REAGENTS USED TO TEST FOR ORGANIC COMPOUNDS 9.4 WORKED OUT EXAMPLES ON ORGANIC QUALITATIVE ANALYSIS. Worked out example 9.4.1 	263 278 278

Worked out example 9.4.5.	
9.5 PRACTICAL EXERCISES ON ORGANIC QUALITATIVE	
ANALYSIS	202
Experiment 9.5.1	
Experiment 9.5.1 Experiment 9.5.2	
Experiment 9.5.2. Experiment 9.5.3.	
Experiment 9.5.4.	
Experiment 9.5.5.	
Experiment 9.5.6.	
Experiment 9.5.7.	
Experiment 9.5.8.	
Experiment 9.5.9.	
Experiment 9.5.10.	
Experiment 9.5.11	
Experiment 9.5.12.	
Experiment 9.5.13.	297
Experiment 9.5.14.	298
CHADTED TEN	200
CHAPTER TEN	
10.0 CHEMICAL ENERGETICS	
10.1 Introduction.	
10.2 Worked out Examples on Chemical Energetics	
Worked out example 10.2.1	
Worked out example 10.2.2.	
Worked out example 10.2.3.	309
10.3 Practical Exercises on Chemical Energetics	311
Experiment 10.3.1	311
Experiment 10.3.2.	314
Experiment 10.3.3.	
Experiment 10.3.4.	321
CHADTED ELEVENI	224
CHAPTER ELEVEN	
11.0 CHEMICAL KINETICS	
11.1 Introduction	324
11.2 Worked out Examples on Chemical Kinetics	327
Worked out example 11.2.1	
Worked out example 11.2.2.	
Worked out example 11.2.3	
Worked out example 11.2.4.	
Worked out example 11.2.5	
11.3 Practical Exercises on Chemical Kinetics	
Experiment 11.3.1	

Experiment 11.3.2.	351
Experiment 11.3.3.	
Experiment 11.3.4.	363
Experiment 11.3.5.	
Experiment 11.3.6.	371
CHAPTER TWELVE	375
12.0 COLLIGATIVE PROPERTIES	375
12.1 Introduction	375
12.2Worked out Examples on Colligative Properties	375
Worked out Example 12.2.1	
12.3 Practical Exercises on Colligative Properties	
Experiment 12.3.1	

CHAPTER ONE 1.0 INTRODUCTION TO VOLUMETRIC ANALYSIS (QUANTITATIVE ANALYSIS)

1.1 Definition of Volumetric Analysis

Volumetric analysis is an experimental method of determining the concentration of a substance in a given solution by use of another substance in another solution whose concentration is accurately known. In other words, volumetric analysis involves two solutions, one is a standard solution (solution of accurately known concentration) and the other is of unknown concentration. The number of moles in the volume of the standard solution used are calculated and then by use of an appropriate stoichiometry (reaction mole ratio), basing on a balanced equation, the concentration of the substance under analysis can be calculated.

1.2 The Titration Process

Volumetric analysis is carried out through a process known as titration which involves running one solution from a burette into a known volume of the other solution in a conical flask until the two solutions have just reacted completely. The point at which the two solutions have just reacted completely is known as the end point. In case it is an acid-base titration, the end point is detected using an indicator such as phenolphthalein indicator and/or methyl orange indicator. During analysis of aqueous iodine, starch solution is used as an indicator yet analysis of some reactants such as acidified potassium manganate(VII) does not require use of indicators; such reactants are said to be self indicators.

1.3 Applications of Volumetric Analysis

Volumetric analysis is applied in the:

- Standardization of solutions.
- Determination of relative formula masses and relative atomic masses.
- Determination of number of molecules of water of crystallisation for hydrated compounds.
- Determination of percentage purity and percentage of the impurity in various compounds.
- Determination of the stoichiometry (reaction mole ratio) of reactants.
- Determination of the Basicity of an acid.
- Determination of the partition coefficient, K_D.
- Determination of the solubility product, K_{sp.}

Volumetric analysis includes the following categories of reactions:

- Acid-base titrations (neutralisation reactions).
- Redox titrations.
- Reactions that involve formation of complex ions.
- Reactions that involve formation of precipitates.

1.4 Terms commonly used in Volumetic Analysis

a) The Mole

The mole is the amount of a substance which contains as many elementary units as there are atoms in 12 grams of the carbon-12 isotope. It is abbreviated as **mol**.

b) Molar mass

Molar mass is the mass of one mole of a substance. It is calculated by summing up the atomic masses of the constituent elements in the chemical formula of the compound. Its units are grams (g) or grams per mole (gmol⁻¹).

For example: Calculate the molar mass of:

i) Sodium hydroxide, NaOH. (Na=23, O=16, H=1)
=
$$[(23x1) + (16x1) + (1x1)] g$$

= $(23 + 16 + 1) g$
= $\mathbf{40g}$

ii) Copper(II) sulphate pentahydrate, CuSO₄.5H₂O. (Cu=64, S=32, O=16, H=1) =
$$[(64x1) + (32x1) + (16x4) + (1x5x2) + (16x5)]$$
 g = $(64 + 32 + 64 + 10 + 80)$ g = 250 g

c) Relative Formula Mass

It is determined in the same way as for molar mass except that the answer is recorded with no units.

d) Concentration

Concentration is the number of grams of a solute dissolved in a solvent to make one litre (one cubic decimeter) of solution **OR**:

The number of moles of a substance dissolved in a solvent to make one litre (one cubic decimetre) of solution.

e) Molar solution

It is a solution which contains one mole of a substance in one litre (one cubic decimetre) of solution.

f) Molarity

Molarity is the number of moles of a substance in one litre (one cubic decimetre) of solution.

g) Titrant

The reagent used in volumetric analysis, whose concentration is accurately known.

h) Titrand

The reagent used in volumetric analysis, whose concentration is to be determined.

i) End point

It is a point reached during titration when the substances in the two solutions provided have just reacted completely. For acid-base titrations, the end point is detected using an indicator.

j) Indicators

An indicator is a substance whose colour changes according to the hydrogen ion concentration of the solution to which it has been added. The table below shows the commonly used indicators, their colour in neutral, alkaline and acidic medium together with their pH ranges.

Indicator	Neutral	Alkaline	Acidic	pH range
	medium	medium	medium	
Litmus solution	Purple	blue	Red	5.0 - 8.0
Phenolphthalein	Colourless	Pink/Purple	Colourless	8.3 - 10.0
Methyl orange	Orange	Yellow	Pink/Red	2.9 – 4.6

d) Standardization

It is the process of determining the concentration of a substance. Standardization is done through reacting a known volume of a substance with a known volume of a standard solution.

e) Standard solution

A standard solution is a solution whose concentration is accurately known.

f) Primary standard

A primary standard is a substance which is chemically stable in aqueous solution whereby its concentration remains constant with change in time and can be used to standardize other solutions.

Examples of primary standards

- Anhydrous sodium carbonate
- Sodium hydrogencarbonate
- Sodium tetraborate (Borax)
- Benzoic acid
- Potassium hydrogenphthalate
- Constant boiling point hydrochloric acid or sulphuric acid
- Potassium iodate

- Potassium dichromate
- Sodium oxalate
- Sodium ethanoate
- Potassium ethanoate
- Iodine
- Silver nitrate
- Sodium chloride
- Potassium bromideand others.

Characteristics of a primary standard

- i) It should be readily available with the highest degree of purity.
- ii) It should readily dissolve in water under the conditions in which it is employed.
- iii) It should have a high relative molecular mass so that the effect of weighing errors is negligible.
- iv) It should be stable at ordinary temperature so that it can be stored indefinitely without change in composition or without contamination.
- v) It should remain unaltered in air during weighing. In otherwards, it should not get oxidized by air or react with carbon dioxide and it should not be hygroscopic, deliquescent or efflorescent.
- vi) Its reaction should be stoichiometric and practically instantaneous.

1.5 Preparation of standard solutions

Standard solutions may be prepared either by weighing solid compounds or by dilution of more concentrated solutions.

1.5.1 Preparation of standard solutions by weighing solids

A known mass of a solid is weighed accurately using a digital weighing balance which determines the mass of the solid to 1 or 2 decimal places or by a triple beam balance (mechanical weighing balance) which determines the mass of the solid to 1 decimal place.

a) Preparation of 250cm³ of 0.1M Sodium hydrogenearbonate solution

The following procedure is followed:

i)The mass of Sodium hydrogenearbonate required to be dissolved in 250cm³ of solutionis calculated. This is because the volumetric flask normally used in preparation of standard solutions from solids has a capacity of 250cm³. However, before the mass required is calculated, the molar mass of the solid is calculated as follows:

$$Molar\ Mass\ of\ NaHCO_3 = [(23x1) + (1x1) + (12x1) + (16x3)] = 84g$$

The calculation is then done as follows:

I mole of NaHCO₃ weighs 84g 0.1 moles of NaHCO₃ weighs (84x0.1)g=8.4g

1000cm³ of solution contains 8.4g
250cm³ of solution contain
$$\left(\frac{8.4}{1000} \times 250\right)g$$

=2.1g

- ii) A clean container e.g. beaker or petri-dish is weighed and its mass recorded, say 40.0g. Using a clean spatula, the solid Sodium hydrogencarbonate is scooped and added into the beaker such that the total mass determined by the weighing balancecorresponds to the sum of the mass of the container and the Sodium hydrogencarbonate required i.e. 42.1g.
- iii) The weighed Sodium hydrogencarbonate is then transferred into a clean beaker and a minimum amount of distilled water, say 100cm³ is added to the solid in the beaker and the mixture stirred with a glass rod thoroughly to form a solution.
- iv)The solution in the clean beaker is then carefully transferred into a clean 250cm³ volumetric flask using a clean filter funnel. Care is taken that all the solution on the walls of the beaker and filter funnel is completely transferred into the volumetric flask.
- v) More distilled water is then carefully added to the solution in the volumetric flask until its level is about 3cm to the calibration mark of the volumetric flask. More distilled water is then added drop by drop until the lower meniscus of the solution coincides with the calibration mark. The lower meniscus of the solution is viewed while the eye is at the same level with the calibration mark of the volumetric flask.

b) Preparation of 10 litres of 0.05M Sodium hydroxide solution

The following procedure is followed:

i)The mass of sodium hydroxide required to be dissolved in 10litres (10,000cm³) of solutionis calculated. However, before the mass required is calculated, the molar mass of sodium hydroxide is calculated as follows:

Molar Mass of NaOH=
$$[(23x1) + (16x1) + (1x1)] = 40g$$

The calculation is then done as follows:

1 mol of NaOH weighs 40g 0.05mol of NaOHweighs (40 x0.05)g = 2.0g 1000cm³ of solution contains 2.0g 10,000cm³ of solution contain $\left(\frac{2.0}{1000} \times 10,000\right)g$ =20g

- ii) A clean container e.g. beaker or petri-dish is weighed and its mass recorded, say 38.0g. Using a clean spatula, the solid sodium hydroxide is scooped and added into the beaker such that the total mass determined by the weighing balancecorresponds to the sum of the mass of the container and the Sodium hydroxide required i.e. 58.0g.
- iii) The weighed sodium hydroxide is then transferred into a clean beaker and a minimum amount of distilled water, say 200cm³ is added to the solid in the beaker and the mixture stirred with a glass rod thoroughly to form a solution.
- iv)The solution in the clean beaker is then carefully transferred into a clean 1000cm³ or 2000cm³ volumetric flask/measuring cylinder using a clean filter funnel. Care is taken that all the solution on the walls of the beaker and filter funnel is completely transferred into the volumetric flask/measuring cylinder.

- v) More distilled water is then carefully added to the solution in the volumetric flask/measuring cylinder, little at a time until the lower meniscus of the solution coincides with the 1,000m³ or 2,000cm³ calibration mark. The lower meniscus of the solution is viewed while the eye is at the same level with the calibration mark of the volumetric flask/measuring cylinder.
- vi) The 1000cm³ or 2000cm³ solution is then poured into a larger vessel, say a 10 litre jerrican and more distilled wateradded using the 1000cm³ or 2000cm³ volumetric flask/measuring cylinder until the total volume is 10,000cm³.

c) Preparation of 12litres of 10% potassium iodide solution

The following procedure is followed:

i)The mass of potassium iodide required to be dissolved in 12litres (12,000cm³) of solutionis calculated.

{Note: 10% potassium iodide is prepared by dissolving 10g of potassium iodide in water to make $100cm^3$ of solution}

 $100cm^3$ of solution contain 10g of potassium iodide $12,000cm^3$ of solution contain $\left(\frac{10}{100} \times 12000\right)g$ of potassium iodide = 1200g of potassium iodide

- ii) A clean container e.g. beaker is weighed and its mass recorded, say 39.2g. Using a clean spatula, the solid potassium iodide is scooped and added into the beaker such that the total mass determined by the weighing balancecorresponds to the sum of the mass of the container and the potassium iodide required i.e. 1239.2g.
- iii) To the weighed potassiumiodide in the clean beaker, a minimum amount of distilled water, say 500cm³ is added and the mixture stirred with a glass rod thoroughly to form a solution.
- iv)The solution in the clean beaker is then carefully transferred into a clean 1000cm³ or 2000cm³ volumetric flask/measuring cylinder using a clean filter funnel. Care is taken that all the solution on the walls of the beaker and filter funnel is completely transferred into the volumetric flask/measuring cylinder.
- v) More distilled water is then carefully added to the solution in the volumetric flask/measuring cylinder, little at a time until the lower meniscus of the solution coincides with the 1000m³ or 2000cm³ calibration mark. The lower meniscus of the solution is viewed while the eye is at the same level with the calibration mark of the volumetric flask/measuring cylinder.
- vi) The 1000cm³ or 2000cm³ solution is then poured into a larger vessel, say a 20 litre jerrican and more distilled wateradded using the 1000cm³ or 2000cm³ volumetric flask/measuring cylinder until the total volume is 12,000cm³.

1.5.2 Preparation of standard solutions by dilution of more concentrated solutions

a) Preparation of 1 litre of 0.1M sodium hydroxide from a stock solution of 2M sodium hydroxide The following calculation is done first:

2moles of sodium hydroxide are contained in 1000cm^3 of the stock solution. 0.1moles of sodium hydroxide are contained in $\left(\frac{1000}{2} \times 0.1\right)$ cm³ of the stock solution = 50cm^3 of the stock solution

Procedure of preparation:

Withdraw 50cm³ of the stock solution using a suitable measuring cylinder and transfer it to a **1, volumetric flask or 1,000cm³ measuring cylinder** and make up to the mark with distilled water.

Note: If a1,000cm³ volumetric flask is not available, then a 250cm³ volumetric flask can be used but the following calculation has to be done first:

1000cm³ of the dilute solution contain 50cm³ of the stock solution

250cm³ of the dilute solution contains $\left(\frac{50}{1000} \times 250\right)$ cm³ of the stock solution. = 12.5cm³ of the stock solution.

Procedure of preparation:

Withdraw 12.5cm³ of the stock solution using a suitable measuring cylinder and transfer it to a 250cm³ volumetric flask or 250cm³ measuring cylinder and make up to the mark with distilled water.

b) Preparation of 5 litres of 0.1M sulphuric acid from a bottle of concentrated sulphuric acid given the following specifications on the bottle:

Minimum assay/percentage purity = 98%

Specific gravity/weight per millilitre/density = 1.84

Molecular weight = 98g

{**Note:** $1ml = 1cm^3$ }

 $1cm^3$ of the 98% concentrated solution contains $\left(\frac{1.84}{100}x98\right)$ g of sulphuric acid

= 1.8032g of sulphuric acidTherefore, 1cm^3 of the 98% concentrated solution contains $\left(\frac{1.8032}{98}\right)$ moles of sulphuric acid

1 cm³ of the 98% concentrated solution contains 0.0184 moles of sulphuric acid 1000cm³ of the 98% concentrated solution contain (0.0184x1000) moles of sulphuric acid

18.4 mol of sulphuric acid are contained in 1000 cm³ of the 98% concentrated solution.

0. Imol of sulphuric acid are contained in $\left(\frac{1000}{18.4} \times 0.1\right)$ cm³ of the 98% concentrated solution. =**5.43cm**³ of the 98%concentrated solution.

1000cm³ of solution require 5.43cm³ of the 98%concentrated solution

5000cm³ of solution require $\left(\frac{5.43}{1000} \times 5000\right)$ cm³ of the 98%concentrated solution =27.15cm³ of the 98%concentrated solution.

Procedure of preparation:

i) Withdraw 27.15cm³ of the 98% concentrated solution using a suitable measuring cylinder and transfer it to a 1000cm³ volumetric flaskor1000cm³ measuring cylinderalready containing water, say about **200cm³ of distilled water**and then make up to the mark with distilled water.

ii) Pour the 1000cm³ solution into a larger vessel, say a 5litre jerrican and add extra 4000cm³ of distilled water using the 1000cm³ volumetric flaskor1000cm³ measuring cylinder.

Note: Whenever you are preparing a dilute solution of an acid from a bottle of the concentrated acid, especially for sulphuric acid, never add water to the measured concentrated acid, instead always add the measured concentrated acid to water in the volumetric flask or measuring cylinder before making up to the mark with more distilled water. Doing otherwise will result in the upward movement of concentrated sulphuric acid which will cause severe burns to the individual from the acid since concentrated sulphuric acid is extremely water loving.

c) Preparation of 650cm ²	of 0.2M hydrochloric acid from a bottle of concentrated hydrochloric
acid given the following s	pecifications on the bottle:

Minimum assay = 35-38% Specific gravity/weight per millilitre/density = 1.18 Molecular Weight = 36.5g

Average minimum assay=
$$\left(\frac{35+38}{2}\right) = 36.5\%$$
 $1 cm^3$ of the 36.5% concentrated solution contains $\left(1.18 \times \frac{36.5}{100}\right)$ g of hydrochloric acid

 $= 0.4307g$ of hydrochloric acid

Thus, $1 cm^3$ of the 36.5% concentrated solution contains $\left(\frac{0.4307}{36.5}\right)$ moles of hydrochloricacid

 $= 0.0118$ moles of hydrochloric acid

 $1 cm^3$ of the 36.5% concentrated solution contains 0.0118 moles of hydrochloric acid

 $1 cm^3$ of the 36.5% concentrated solution contains 0.0118 moles of hydrochloric acid

 $= 11.8 M$
 11.8 mol of hydrochloric acid are contained in $1000cm^3$ of the 36.5% concentrated solution.

 0.2 mol of HCl are contained in $\left(\frac{1000}{11.8} \times 0.2\right) cm^3$ of the 36.5% concentrated solution.

 $1000cm^3$ of solution require $16.95cm^3$ of the 36.5% concentrated solution.

 $650cm^3$ of solution require $\left(\frac{16.95}{1000} \times 650\right) cm^3$ of the 36.5% concentrated solution

 $= 11.02cm^3$ of the 36.5% concentrated solution

 $= 11.02cm^3$ of the 36.5% concentrated solution

Procedure of preparation:

Withdraw 11cm³ of the 36.5% concentrated solution using asuitable measuring cylinder and transfer it to a 1000cm³ measuring cylinder containing a good amount of water, say about 400cm³ of distilled water and then make up to 650cm³ with distilled water.

1.5.3 Trial Exercises on Preparation of Standard Solutions a)Calculate the mass of sodium hydroxide required to prepare 1 litre of 0.1M sodium hydroxide solution.(Na=23, O=16, H=1)	

b) Determine the mass of anhydrous sodium carbonate required to prepare 250cm³ of 0.06M sodium carbonate solution. (Na=23, C=12, O=16) c) Calculate the mass of potassium hydroxide required to prepare 20 litres of 0.2M potassium hydroxide solution. (K=39, O=16, H=1) d) Determine the mass of: (i) potassium iodide required to prepared 6 litres of 10% potassium iodide solution.

(ii) starch required to prepare 2 litres of 1% starch solution.
 e) Calculate the volume of a: (i) 2M stock solution of sodium hydroxide required to prepare 1 litre of 0.08M sodium hydroxide solution.
(ii) 4M stock solution of hydrochloric acid required to prepare 15 litres of 0.2M hydrochloric acid solution.
f) Determine the molarity of a solution of concentrated sulphuric acid in a bottle with the following specifications: Minimum assay = 98% Specific gravity (density) = 1.84 Molecular Weight = 98g

g)A bottle of concentrated hydrochloric acid has got the following specifications: Minimum assay = $35-38\%$ Wt per ml (density)=1.18 Molecular weight = $36.5g$ Calculate the volume of the concentrated hydrochloric acid required to prepare 1 litre of 2M hydrochloric			
acid.			
	. 		
	· • •		
	· • •		
h)A bottle of concentrated nitric acid has got the following specifications: Minimum assay = 69-72% Wt per ml (density)=1.41-1.43 Molecular weight = 63g Calculate the volume of the concentrated nitric acid required to prepare 40 litres of 2M nitric acid.			

i) A bottle of concentrate Minimum assay =30% Wt per ml (density) = 0.8 Molecular weight =17g Calculate the volume of	ed ammonia solution has	s got the following sp	pecifications:	
solution.		•		
1.6 Rules followed in	n presentation of wo	ork in Volumetri	c Analysis	

(The Dos and Don'ts of Volumetric Analysis)

- In case the procedure involves weighing, the values of mass should be recorded to the same number of decimal placese.g. one decimal place or two decimal places depending on the weighing scale used. Some weighing scales determine mass to one decimal place while others determine the mass to two decimal places. In the same way, the mass of the beaker should have been correctly subtracted from the mass of the beaker plus the solid sample to give the mass of the solid sample.
- The capacity/volume of the pipette used is recorded to zero decimal places, one decimal place or two decimal places (However, recording the capacity/volume of the pipette to one decimal place is preferred).

- Each value in the table of results is recorded to two decimal places and the second decimal place must be a zero. For instance, 24.20 and not 24.02. However, the second decimal place can be five ifthe reading is exactly between two values, say between 22.20 and 22.30 in which case it can be recorded as 22.25.
- The initial burette readings may be different.
- To get the titre value of each experiment, each initial burette reading should have been correctly subtracted from the final burette reading.
- The three titre values are not expected to be exactly the same since it is not practically possible.
- There should be consistency in at least two titre values, which are supposed to be used in calculating the averagetitre value. These two titre values should not deviate beyond ± 0.10 cm³.
- The method/working used to calculate the average titre value should be clearly shown and the answer obtained should be preferably recorded to two decimal places.
- All calculations must be based on the mole concept and should be done from first principles without direct application of mathematical formulae.

CHAPTER TWO 2.0 STANDARDIZATION OF SOLUTIONS

2.1Introduction

Standardization of a solution refers to the process of determining the concentration of a substance in a solution. Standardization of a solution is done by reacting a known volume of the solution of the substance with a known volume of a standard solution. At this level, the standard solution is some times prepared by the student basing on the procedures given in the experiment.

2.2Worked out examples on Standardization of solutions

Worked out example 2.2.1

You are provided with the following:

FA1 which is a solution of approximately 0.1M hydrochloric acid

Substance **H** which is anhydrous sodium carbonate.

You are required to determine the actual concentration of the hydrochloric acid in FA1 in moldm⁻³ and also ing dm⁻³ (Na=23, C=12, O=16, H=1, Cl=35.5)

Procedure

i) Weigh accurately 1.3g of solid H into a clean beaker.

ii)To the solid in the beaker, add 100cm³ of distilled water and stir well to dissolve.

iii)Transfer the solution in the beaker carefully into a 250cm³ volumetric flask and make up to the mark with distilled water. Label this solution FA2.

iv)Pipette 25 or 20cm³ of FA2 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA1 from the burette until the end point is reached.

v)Repeat the titration until you obtain consistent results.

vi) Record your results in the table below.

Results	\checkmark
Mass of beaker + H	g
Mass of beaker alone	40.2.\dots
Mass of H alone	1.3.V.
Capacity of pipette used	25.0

Final burette reading (cm ³)	25.30	25.10	35.00
Initial burette reading (cm ³)	0.00	0.00	10.00
Volume of FA1 used (cm ³)	25.30	25.10	25.00

a) Determine the concentration of the sodium carbonate in FA2 in moldm⁻³

Molar mass of $Na_2CO_3 = [(23x2) + (12x1) + (16x3)] = 106g$ 106g of sodium carbonate contain 1 mole 1.3g of sodium carbonate contain $\left(\frac{1}{106} \times 1.3\right)$ moles = 0.01226 moles

250cm³ of FA2 contain 0.01226 moles of sodium carbonate

1000 cm³ of FA2 contain $\left(\frac{0.01226}{250} \times 1000\right)$ moles of sodium carbonate per litre =0.049 mol dm⁻³

b) Write the equation of the reaction

 $Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$

c) Calculate the number of moles of the hydrochloric acid in FA1 that reacted with the sodium carbonate in FA2.

1000 cm³ of FA2 contain 0.049 moles of sodium carbonate

25 cm³ of FA2 contains $\left(\frac{0.049}{1000} \times 25\right)$ moles of sodium carbonate = 0.001225 moles of sodium carbonate

 $Moles\ of\ hydrochloric\ acid=(2xmoles\ of\ sodium\ carbonate)$

$$= (2x0.001225)$$

$$= 0.00245$$

- d) Determine the concentration of the hydrochloric acid in FA1 in:
 - i) moles per dm³

25.05 cm³ of FA1 contain 0.00245 moles of hydrochloric acid

1000 cm³ of FA1 contains $\left(\frac{0.00245}{25.05} \times 1000\right)$ moles of a hydrochloric acid = 0.0978 mol dm⁻³
ii) grams per dm³.

Molar mass of HCl = [(1x1) + (35.5x1)] = 36.5g

Molar mass of fice -l(1x1) weighs 36.5g

1 mole of hydrochloric acid weighs 36.5g

0.0978 moles of hydrochloric acid weighs (36.5x0.0978)g

= 3.57g dm⁻³

2.3 Practical Exercises on Standardization of solutions

Experiment 2.3.1

You are provided with the following:

GA1 which is a solution of approximately 0.1M sulphuric acid

Substance **J** which is sodium hydrogencarbonate

You are required to determine the concentration of the sulphuric acid in GA1 in grams per dm³.

(Na=23, C=12, =16, H=1, S=32)

Procedure

- i) Weigh accurately 3.1g of solid J into a clean beaker. To the solid in the beaker, add 100cm³ of distilled water and stir well with a glass rod to dissolve.
- ii) Transfer the solution in the beaker carefully into a 250cm³ volumetric flask and make up to the mark with distilled water. Label this solution GA2.
- iii) Pipette 25 or 20cm³ of GA2 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with GA1 from the burette until the end point is reached.

iv)Repeat the titration until you obtain consistent results.v) Record your results in the table below.	
Mass of beaker + Jg	
Mass of beakerg	
Mass of Jg	
Capacity of pipette used	
Final burette reading (cm ³)	
Initial burette reading (cm ³)	
Volume of GA1 used (cm ³)	
Values used to calculate average volume of GA1	3
Average volume of GA1 used	
Average volume of GAT used	
a) Write the equation of the reaction that occurrs.	•
b) Determine the number of moles of the sodium hydrogencarbonate in 1 dm ³ of GA2.	
c) Calculate the number of moles of the sulphuric acid in GA1 that reacted with the sodium hydrogenearbonate in GA2.	
d) Determine the concentration of the sulphuric acid inGA1 ingdm ⁻³ .	
	••
	 .

Experiment 2.3.2 You are provided with the following: FA1 which is a solution of 0.1M potassium hydroxide FA2 which is approximately 1.0 M sulphuric acid You are required to determine the molar concentration of the sulphuric acid in FA2. Procedure i)Using a suitable measuring cylinder, measure and transfer 15cm³ of FA2 into a 250cm³ volumetric flask. Add about 100cm³ of distilled water and shake well to mix, then make up to the mark with distilled water. Label the solution FA3. ii)Pipette 25 or 20cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA3 from the burette until the end point is reached. iii)Repeat the titration until you obtain consistent results. Record your results in the table below. Capacity of pipette used	A	Simplified App	roach to A' Le	vel Chemistry P	racticals	
You are provided with the following: FA1 which is a solution of 0.1M potassium hydroxide FA2 which is approximately 1.0 M sulphuric acid You are required to determine the molar concentration of the sulphuric acid in FA2. Procedure i)Using a suitable measuring cylinder, measure and transfer 15cm³ of FA2 into a 250cm³ volumetric flask. Add about 100cm³ of distilled water and shake well to mix, then make up to the mark with distilled water. Label the solution FA3. ii)Pipette 25 or 20cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA3 from the burette until the end point is reached. iii)Repeat the titration until you obtain consistent results. Record your results in the table below. Capacity of pipette used						
You are provided with the following: FA1 which is a solution of 0.1M potassium hydroxide FA2 which is approximately 1.0 M sulphuric acid You are required to determine the molar concentration of the sulphuric acid in FA2. Procedure i)Using a suitable measuring cylinder, measure and transfer 15cm³ of FA2 into a 250cm³ volumetric flask. Add about 100cm³ of distilled water and shake well to mix, then make up to the mark with distilled water. Label the solution FA3. ii)Pipette 25 or 20cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA3 from the burette until the end point is reached. iii)Repeat the titration until you obtain consistent results. Record your results in the table below. Capacity of pipette used						
i)Using a suitable measuring cylinder, measure and transfer 15cm³ of FA2 into a 250cm³ volumetric flask. Add about 100cm³ of distilled water and shake well to mix, then make up to the mark with distilled water. Label the solution FA3. ii)Pipette 25 or 20cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA3 from the burette until the end point is reached. iii)Repeat the titration until you obtain consistent results. Record your results in the table below. Capacity of pipette used	You are provided with the FA1 which is a solution of FA2 which is approximate.	of 0.1M potassiutely 1.0 M sulph	uric acid	ı of the sulphuri	ic acid in FA2.	
Final burette reading (cm³) Initial burette reading (cm³) Volume of FA3 used (cm³) Values used to calculate average volume of FA3 Average volume of FA3 used	i)Using a suitable measur flask. Add about 100cm ³ distilled water. Label the ii)Pipette 25 or 20cm ³ of and titrate with FA3 from	of distilled water solution FA3. FA1 into a clear the burette unt	er and shake we n conical flask. il the end point	Add 2-3 drops of is reached.	nake up to the mark	with
Initial burette reading (cm³) Volume of FA3 used (cm³) Values used to calculate average volume of FA3 Average volume of FA3 used a) Calculate the number of moles of sulphuric acid:	Capacity of	of pipette used		cm	3	
Volume of FA3 used (cm³) Values used to calculate average volume of FA3	Final burette readi	ng (cm ³)				
Values used to calculate average volume of FA3	Initial burette read	ing (cm ³)				
Average volume of FA3 usedcm a) Calculate the number of moles of sulphuric acid:	Volume of FA3 us	sed (cm ³)				
•	Average volume of	FA3 used				cm ³
		-		in FA1.		
ii) in 250cm ³ of FA3.	ii) in 250cm ³ of FA3	•				

b) Determine the molar concentration of the sulphuric acid in FA2.
Experiment 2.3.3 You are provided with the following: FA1 which is a solution of approximately 0.2M hydrochloric acid FA2 which is sodium hydroxide solution Substance K which is anhydrous sodium carbonate You are required to standardise the hydrochloric acid in FA1. (Na=23, C=12, O=16, H=1, Cl=35.5)
 i) Weigh accurately 1.4 g of solid K into a clean beaker. To the solid in the beaker, add 100cm³ of distilled water and stir well with a glass rod to dissolve. ii) Transfer the solution in the beaker carefully into a 250cm³ volumetric flask and make up to the mark with distilled water. Label this solution FA3. iii) Pipette 25 or 20cm³ of FA3 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA1 from the burette until the end point is reached. v) Repeat the titration until you obtain consistent results. vi) Record your results in the table below.
Mass of beaker + Kg
Mass of beakerg
Mass of Kg
Capacity of pipette used
Table I
Final burette reading (cm ³)
Initial burette reading (cm ³)
Volume of FA1 used (cm ³)
Values used to calculate average volume of FA1

a)	Determine the number of moles of Sodium carbonate in 1 dm ³ of FA3.
b)	Calculate the number of moles of the hydrochloric acid in FA1 that reacted with the sodium carbonate in FA3.
c)	Determine the concentration of the hydrochloric acid in FA1 in: oles per dm ³ .
 ii) g	rams per dm ³ .
 Pi	ocedure II

- i) Using a measuring cylinder, measure and transfer 50cm³ of FA1 into a clean beaker. Add 100cm³ of distilled water and label the solution FA4.
- ii) Pipette 20 or 25cm³ of FA2 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA4 from the burette until the end point is reached.
- iii) Repeat the titration until you obtain consistent tresults. Record your results in the table below.

Table II

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA4 used (cm ³)		

Values used to calculate average volume of FA4	cm ³
Average volume of FA4 used	
d) Determine the concentration of: i) hydrochloric acid in FA4 in mol dm ⁻³ .	
ii) sodium hydroxide in FA2 in mol dm ⁻³ .	

Experiment 2.3.4

You are provided with the following:

Solid T which is Borax (sodium tetraborate, Na₂B₄O₇.10H₂O)

GA1 which is a solution of hydrochloric acid.

GA2 which is a solution prepared by dissolving 11.0g of impure sodium carbonate in water to form one litre of solution.

Methyl orange indicator

You are required to determine the:

- i) concentration of hydrochloric acid in mol dm⁻³using borax.
- ii) percentage purity of the sodium carbonate used in the preparation of GA2.

Theory

Sodium tetraborate reacts with hydrochloric acid according to the equation below:

Molecular equation

$$Na_2B_4O_7.10H_2O(aq) \ + 2HCl(aq) \longrightarrow 2NaCl(aq) + 4H_3BO_3(aq) + 5H_2O(l)$$

 Ionic equation

$$B_4O_7^{2-}(aq) + 2H^+(aq) + 5H_2O(1) \rightarrow 4H_3BO_3(aq)$$

Since the boric acid formed (H₃BO₃) is a weak acid and therefore, it does not affect the titration as long as methyl orange (or methyl red) is the indicator used.

Procedure I

- (i) Weigh accurately, 4.5g of solid T into a beaker. Using a measuring cylinder, add 100cm³ of distilled water and stir well to dissolve. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution GA3.
- (ii) Pipette 25.0 or 20.0 cm³ of GA3 into a conical flask. Add 2-3 drops of methyl orange indicator and titrate with GA1 from the burette until the end point is reached.
- (iii) Repeat the titration until you obtain consistent results.
- (iv) Record your results in table I below.

Mass of beaker + T	g
Mass of beaker	g
Mass of T	g
Canacity of ninette used	cm^3

Table I

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of GA1 used (cm ³)		

Average volume of GA1 used						
a)	Determine the concentration of:					
	(i) borax in GA3 in mol dm ⁻³ . (Na=23, B=11, O=16, H=1)					
••••						
••••	(ii) hydrochloric acid in GA1 in r	 mol dm ⁻³				
	(ii) hydrochione deid in O/V1 in i					
(i) l titra (ii)	Pipette 25.0 or 20.0 cm ³ of GA2 in atte with GA1 from the burette until Repeat the titration until you obtain Record your results in table II be	I the end point is r in consistent result	eached.	of methyl orange inc	licator and	
Ź	Table II		Τ		\neg	
	Final burette reading (cm ³) Initial burette reading (cm ³)					
	Volume of GA1used (cm ³)					

Values used to calculate average volume of GA1	cm ³
Average volume of FA4 used	cm ³
b) Calculate the number of moles of sodium carbonate in GA2 which reacted with hydroc GA1.	hloric acid in
c) Determine the:	
(i) concentration of sodium carbonate in GA2 in grams per litre. (Na = 23, C=12, O=1	6)
ii) percentage purity of the sodium carbonate sample used in the preparation of GA2.	

CHAPTER THREE 3.0SOLUTIONMIXTURES

Solution mixtures are categorised as either simple or complex mixtures.

3.1 Simple Mixtures

Simple mixtures are those which when titrated against a standard solution, only one of the components of the mixture reacts with the standard solution while the other component of the mixture does not. Therefore, the number of moles and consequently, the concentration of the component that reacts can be calculated basing on the reaction stoichiometry (reaction mole ratio) while the number of moles and consequently, the concentration of the component that does not react is calculated by difference. Examples of simple mixtures include the following:

- Potassium hydroxide and potassium chloride titrated against hydrochloric acid.
- Sodium hydroxide and sodium chloride titrated against hydrochloric acid.
- Potassium hydroxide and potassium sulphate titrated against sulphuric acid.
- Sodium hydroxide and sodium sulphate titrated against sulphuric acid.
- Potassium carbonate and potassium chloride titrated against hydrochloric acid.
- Sodium carbonate and sodium chloride titrated against hydrochloric acid.
- Oxalic acid, H₂C₂O₄.2H₂O and sodium oxalate, Na₂C₂O₄ titrated against sodium hydroxide or potassium hydroxide.
- Iron(II) ions, Fe²⁺ and iron(III) ions, Fe³⁺ titrated against manganate(VII) ions, MnO₄ in the presence of an acid.

3.1.1 Worked out Examples on Simple Mixtures

Worked out example 3.1.1.1

You are provided with the following:

FA1 which is1M nitric acid.

FA2 which is a mixture of potassium carbonate and potassium nitrate12.8g per litre.

You are required to determine the percentage of potassium carbonate in the FA2 mixture.

Procedure

Using a measuring cylinder, measure and transfer 50cm³ of FA1 into a 250cm³ volumetric flask. Add 100cm³ of distilled water and shake well to mix and then make up to the mark with more distilled water. Label the solution FA3.

Pipette 20 or 25cm³ of FA2 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA3 from the burette until the end point is reached. Repeat the titration until the end point is reached. Repeat the titration untilyou opbtain consistent results. Record your results in the table below.

		2
Capacity of pipette used	20	\dots cm ³ ($\frac{1}{2}$ mark)

Final burette reading (cm ³)	12.80	12.60	20.50
Initial burette reading (cm ³)	0.00	0.00	8.00
Volume of FA3 used (cm ³)	12.80	12.60	12.50

 $(4\frac{1}{2} \text{ marks})$

(½ mark) $(2\frac{1}{2} \text{ marks})$

Average volume of FA3 used..... $\left(\frac{12.60 + 12.50}{2}\right) = 12.5...$

- a) Calculate the:
- i) molarity of nitric acid in FA3.

 $(1\frac{1}{2} \text{ marks})$

1000cm³ of FA1contain 1 mole of nitricacid

 $50cm^3$ of FA1 contain $\left(\frac{1}{1000}x50\right)$ moles of nitric acid = 0.05moles of nitric acid

250cm³ of FA3 contain 0.05 moles of nitric acid

 $1000cm^3$ of FA3 contain $\left(\frac{0.05}{250}x\ 1000\right)$ moles of nitric acid

= 0.2 moles per litre

i) number of moles of potassium carbonate in FA2 that reacted with the nitric acid in FA3.(3 marks)

$$2HNO_3(aq) + K_2CO_3(aq) \rightarrow 2KNO_3(aq) + H_2O(l) + CO_2(g)$$
 $1000cm^3$ of FA3 contain 0.2 moles of nitric acid

12.55cm³ of FA3 contain
$$\left(\frac{0.2}{1000}x 12.55\right)$$
 moles of nitric acid

= 0.00251 moles of nitric acid

Moles of potassium carbonate = $\frac{1}{2}$ x moles of nitric acid

$$= \left(\frac{1}{2} \times 0.00251\right)$$

$$= 0.001255$$

- b) Determine the:
 - i) concentration of potassium carbonate in FA2 in gdm⁻³.(3 marks)

20cm³ of FA2 contain 0.001255 moles of potassium carbonate

 $1000 cm^3$ of FA2 contain $\left(\frac{0.001255}{20}x\ 1000\right)$ woles of potassium carbonate $= 0.0628 \text{ moldm}^{-3}$

Molar mass of $K_2CO_3 = (39x2) + (12x1) + (16x3) = 138g$

1 mole of potassium carbonate weighs 138g

0.0628 moles of potassium carbonate weigh (138 x 0.0628)

$$=8.67gdm^{-3}$$

ii) percentage of potassium carbonate in the FA2 mixture.

Percentage of potassium carbonate =
$$\left(\frac{8.67}{12.8} \times 100\right)\%$$
= 67.7%

Worked out example 3.1.1.2

You are provided with the following:

FA1 which is 0.1M sodium hydroxide.

FA2 which is a mixture of oxalic acid $(H_2C_2O_4.2H_2O)$ and sodium oxalate $(Na_2C_2O_4)$ containing 12.4gdm⁻³.

You are required to determine the percentage of sodium oxalate in FA2.

Theory

In the process of titration, the sodium hydroxide in FA1 reacts with only oxalic acid in the FA2 mixture according to the reaction below.

$$2NaOH(aq) + H_2C_2O_4(aq) \rightarrow Na_2C_2O_4(aq) + 2H_2O(l)$$

Therefore, the number of moles of oxalic acid can be determined basing on the mole ratio between sodium hydroxide and oxalic acid in the reaction above. Sodium oxalate does not take part in the reaction.

Procedure:

Pipette 25cm³ or 20cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA2 from the burette. Repeat the titration until you obtain consistent results. Record your results in the table below.

a) Calculate the number of moles of oxalic acid that reacted with the sodium hydroxide.

1000cm³ of FA1 contain 0.1 moles of sodium hydroxide

25cm³ of FA1 contain
$$\left(\frac{0.1}{1000} \times 25\right)$$
 woles of sodium hydroxide = 0.0025 moles of sodium hydroxide

Moles of oxalic acid =
$$\frac{1}{2}$$
x moles of sodium hydroxide
= $\left(\frac{1}{2} \times 0.0025\right)$
= 0.00125

b)	Determine	the:
v_j	Determine	uic.

i) concentration of sodium oxalate in FA2 in gdm⁻³.(Na=23, C=12, O=16, H=1)

$$20.30 \text{ cm}^3 \text{ of } FA2 \text{ contain } 0.00125 \text{ moles of oxalic acid}$$
 $1000 \text{ cm}^3 \text{ of } FA2 \text{ contain } \left(\frac{0.00125}{20.30} \times 1000\right) \text{ moles of oxalic acid}$ $= 0.0616 \text{ mol dm}^{-3}$ $Molar \text{ mass of } H_2C_2O_4.2H_2O = [(1x2) + (12x2) + (16x4) + (2x18)] = 126g$

ii) percentage of sodium oxalate in FA2

Percentage of sodium oxalate =
$$\left(\frac{4.64}{4.64} \times 100\right)$$
%

Percentage of sodium oxalate =
$$\left(\frac{4.64}{12.4} \times 100\right)\%$$
= 37.42%

3.1.2 Experiments on Simple Mixtures

Experiment 3.1.2.1

You are provided with the following:

FA1 which is 0.1M sulphuric acid.

FA2 which is a mixture of sodium hydroxide and sodium sulphate containing 32.8g per litre.

You are required to determine the percentage of sodium hydroxide in the FA2 mixture.

Procedure

Using a measuring cylinder, measure and transfer 120cm³ of FA2 into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 20 or 25cm³ of FA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA1 from the burette until the end point is reached. Repeat the titration until the end point is reached. Repeat the titration untilyou obtain consistent results. Record your results in the table below.

Values used to calculate average volume of FA1	cm
Average volume of FA1 used	cm ²

a)	Calculate the number of moles of:
.,	i) sulphuric acid in FA1 that reacted.
	ii) sodium hydroxide in FA3 that reacted with the acid in FA1.
h) :	Determine the:
· , .	
	i) concentration of sodium hydroxide in FA2 in gdm ⁻³ .
	ii) percentage of sodium hydroxide in the FA2 mixture.

Experiment 3.1.2.2

You are provided with the following:

FA1which is 0.018M potassium manganate(VII) solution

FA2 which is 0.1M sodium hydroxide solution

FA3 which is a mixture of sodium oxalate, Na₂C₂O₄ and oxalic acid, H₂C₂O₄.2H₂O.

FA4 which is 2M sulphuric acid

You are required to determine the percentage of sodium oxalate in the FA3 mixture.

Theory

In the process of titration, the sodium hydroxide in FA2 reacts with only oxalic acid in the FA3 mixture according to the reaction below.

$$2NaOH(aq) + H_2C_2O_4(aq) \rightarrow Na_2C_2O_4(aq) + 2H_2O(l)$$

Therefore, the number of moles of oxalic acid can be determined basing on the reaction mole ratio between sodium hydroxide and oxalic acid in the reaction above. Sodium oxalate does not react with sodium hydroxide.

However, the acidified potassium manganate(VII) in FA1 reacts with both oxalic acid and sodium oxalate in FA3. In other wards, the acidified manganate(VII) ions in FA1 react with oxalate ions from both Oxalic acid and Sodium oxalate in FA3 according to the following equation:

$$2MnO_4^{-1}(aq) + 16H^{+}(aq) + 5C_2O_4^{-2}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

Therefore, the total number of oxalate ions in the reaction mixture can be determined basing on the reactionmole ratio between acidified manganate(VII) ions and oxalate ions. The number of moles of oxalate ions from sodium oxalate can then be calculated by difference.

Note: Acidifiedmanganate(VII) ions react with oxalate ions only when the solution containing oxalate ions is heated to a temperature of about 60° C.

Procedure A

- i) Pipette 25 or 20cm³ of FA3 into a clean conical flask and titrate with FA2 from the burette using phenolphthalein indicator.
- ii) Repeat the titration until you obtain consistent results.
- iii) Record your results in the table below.

Capacity o	f pipette used	 cm ³
Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used (cm ³)		

Values used to calculate average volume of FA2.	\dots cm ³
Average volume of FA2 used.	\dots cm ³
a) Determine the concentration of oxalic acid in FA3 in: i)moles per dm ³	
ii) grams per dm ³ (C=12, O=16, H=1)	

A Simplified Approa	ach to A' Level Chemist	try Practicals
rocedure B		
Rinse the burette thoroughly with water a	and then fill it with FA1.	,
Pipette 25 or 20cm ³ of FA3 into a clean of measuring cylinder and warm the mixtur	conical flask. Add an eque to about 60°C and titra	ual volume of FA4 using a attention to the hot mixture with FA1 from
burette until the solution just turns perma		are the not mixture with 1711 from
Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA1 used (cm ³)	_	
(4.1.)		
alues used to calculate average volume of	FA1	cn
verage volume of FA1 used		cn
Determine the: i)total concentration of oxalate ions in FA	A3 in moles per dm ³ .	
ii) concentration of sodium oxalate in FA	A3 in grams per dm ³ .(Na	1=23, C=12, O=16)
Calculatethe percentage of sodium oxalat	te in the FA3 mixture.	

3.2Complex Mixtures

Complex mixtures are those which when titrated against a standard solution, both of the components of the mixture react with the standard solution. Therefore, the number of moles and consequently, the concentration of both components of the mixture can be calculated basing on the reaction stoichiometry (reaction mole ratio) of each of the components with the reactant in the standard solution.

Examples of complex mixtures include the following:

- Sodium hydroxide and sodium carbonate titrated against hydrochloric acid.
- Sodium hydroxide and sodium carbonate titrated against nitric acid.
- Sodium hydroxide and sodium carbonate titrated against sulphuric acid.
- Potassium hydroxide and potassium carbonate titrated against hydrochloric acid.
- Potassium hydroxide and potassium carbonate titrated against nitric acid.
- Potassium hydroxide and potassium carbonate titrated against sulphuric acid.
- Sodium hydroxide and sodium hydrogencarbonate titrated against hydrochloric acid.
- Sodium hydroxide and sodium hydrogenearbonate titrated against nitric acid.
- Sodium hydroxide and sodium hydrogenearbonate titrated against sulphuric acid.
- Potassium hydroxide and potassium hydrogencarbonate titrated against hydrochloric acid
- Potassium hydroxide and potassium hydrogencarbonate titrated against nitric acid
- Potassium hydroxide and potassium hydrogencarbonate titrated against sulphuric acid
- Sodium carbonate and sodium hydrogenearbonate titrated against hydrochloric acid.
- Sodium carbonate and sodium hydrogenearbonate titrated against nitric acid.
- Sodium carbonate and sodium hydrogencarbonate titrated against sulphuric acid.
- Potassium carbonate and potassium hydrogenearbonate titrated against hydrochloric acid.
- Potassium carbonate and potassium hydrogenearbonate titrated against hydrochloric acid.
- Potassium carbonate and potassium hydrogenearbonate titrated against nitric acid.
- Potassium carbonate and potassium hydrogenearbonate titrated against sulphuric acid, e.t.c.

Note: Complex mixtures introduce us to the concept of *Double Indicator Titrations*.

3.3 Double Indicator Titrations

In double indicator titrations, a mineral acid such as hydrochloric acid, nitric acid or sulphuric acid is reacted with a mixture containing a base such as sodium hydroxide or potassium hydroxide and a carbonate or hydrogen carbonate of sodium or potassium. Alternatively, the mineral acid is reacted with a mixture of sodium carbonate or potassium carbonate and sodium hydrogencarbonate or potassium hydrogencarbonate. The titration is carried out using two indicators, that is, phenolphthalein indicator and methyl orange indicator hence double indicator titrations.

Note: Students should never attempt questions of double indicator titrations basing on cram work, but should instead attempt those questions by recalling the following facts as summarized below:

a) With Phenolphthalein Indicator

When a base such as sodium hydroxide or potassium hydroxide is titrated against a mineral acid, such as hydrochloric acid, nitric acid or sulphuric acid using phenolphthalein indicator, the base undergoes complete neutralization to form the corresponding salt plus water.

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$

```
NaOH(aq) + HNO<sub>3</sub>(aq) \rightarrow NaNO<sub>3</sub>(aq) + H<sub>2</sub>O(l)

2NaOH(aq) + H<sub>2</sub>SO<sub>4</sub>(aq) \rightarrow Na<sub>2</sub>SO<sub>4</sub>(aq) +2H<sub>2</sub>O(l)

KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H<sub>2</sub>O(l)

KOH(aq) + HNO<sub>3</sub>(aq) \rightarrow KNO<sub>3</sub>(aq) + H<sub>2</sub>O(l)

2KOH(aq) + H<sub>2</sub>SO<sub>4</sub> (aq) \rightarrow K<sub>2</sub>SO<sub>4</sub>(aq) + 2H<sub>2</sub>O(l)

The general ionic equation for the above reactions is:

OH<sup>-</sup>(aq) +H<sup>+</sup>(aq) \rightarrowH<sub>2</sub>O(l)
```

When sodium carbonate or potassium carbonate is titrated against a mineral acid such as hydrochloric acid, nitric acid or sulphuric acid using phenolphthalein indicator, the metal carbonate undergoes half neutralization to form sodium hydrogenearbonate or potassium hydrogenearbonate plus the corresponding salt.

```
Na_2CO_3(aq) + HCl(aq) \rightarrow NaHCO_3(aq) + NaCl(aq)

Na_2CO_3(aq) + 2HNO_3(aq) \rightarrow NaHCO_3(aq) + NaNO_3(aq)

2Na_2CO_3(aq) + H_2SO_4(aq) \rightarrow 2NaHCO_3(aq) + Na_2SO_4(aq)

K_2CO_3(aq) + HCl(aq) \rightarrow KHCO_3(aq) + KCl(aq)

K_2CO_3(aq) + HNO_3(aq) \rightarrow KHCO_3(aq) + KNO_3(aq)

2K_2CO_3(aq) + H_2SO_4(aq) \rightarrow 2KHCO_3(aq) + K_2SO_4(aq)

The general ionic equation for the above reactions is:

CO_3^{2-}(aq) + H^+(aq) \rightarrow HCO_3^-(aq)
```

When sodium hydrogenearbonate or potassium hydrogenearbonate is titrated against a mineral acid such as hydrochloric acid, nitric acid or sulphuric acid using phenolphthalein indicator, **no reaction occurs.**

```
NaHCO<sub>3</sub>(aq) + HCl(aq) \rightarrow No reaction
NaHCO<sub>3</sub>(aq) + HNO<sub>3</sub>(aq) \rightarrow No reaction
NaHCO<sub>3</sub>(aq) +H<sub>2</sub>SO<sub>4</sub>(aq) \rightarrowNo reaction
KHCO<sub>3</sub>(aq) + HCl(aq) \rightarrow No reaction
KHCO<sub>3</sub>(aq) +HNO<sub>3</sub>(aq) \rightarrow No reaction
KHCO<sub>3</sub>(aq) +H<sub>2</sub>SO<sub>4</sub>(aq) \rightarrow No reaction
```

b) With Methyl orange indicator

Whensodium hydroxide or potassium hydroxideis titrated against a mineral acid such as hydrochloric acid, nitric acid or sulphuric acid using methyl orange indicator, the metal hydroxide undergoes complete neutralization to form the corresponding salt plus water.

```
NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H<sub>2</sub>O(l)

NaOH(aq) + HNO<sub>3</sub>(aq) \rightarrow NaNO<sub>3</sub>(aq) + H<sub>2</sub>O(l)

2NaOH(aq) + H<sub>2</sub>SO<sub>4</sub>(aq) \rightarrowNa<sub>2</sub>SO<sub>4</sub>(aq) + 2H<sub>2</sub>O(l)

KOH(aq) + HCl(aq) \rightarrowKCl(aq) + H<sub>2</sub>O(l)

KOH(aq) + HNO<sub>3</sub>(aq) \rightarrowKNO<sub>3</sub>(aq) + H<sub>2</sub>O(l)

2KOH(aq) + H<sub>2</sub>SO<sub>4</sub>(aq) \rightarrow K<sub>2</sub>SO<sub>4</sub>(aq) + 2H<sub>2</sub>O(l)

The general ionic equation for the above reactions is:

OH<sup>-</sup>(aq) + H<sup>+</sup>(aq) \rightarrow H<sub>2</sub>O(l)
```

When sodium carbonate orpotassium carbonate is titrated against a mineral acid such as hydrochloric acid, nitric acid or sulphuric acid usingmethyl orange indicator, the metal carbonate undergoes complete neutralisation to form the corresponding salt, water plus carbon dioxide gas.

```
\begin{split} \text{Na}_2\text{CO}_3(\text{aq}) + 2\text{HCl}(\text{aq}) &\to 2\text{NaCl}(\text{aq}) + \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \text{Na}_2\text{CO}_3(\text{aq}) + 2\text{HNO}_3(\text{aq}) &\to 2\text{NaNO}_3(\text{aq}) + \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \text{Na}_2\text{CO}_3(\text{aq}) + \text{H}_2\text{SO}_4(\text{aq}) &\to \text{Na}_2\text{SO}_4(\text{aq}) + \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \text{K}_2\text{CO}_3(\text{aq}) + 2\text{HCl}(\text{aq}) &\to 2\text{KCl}(\text{aq}) + \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \text{K}_2\text{CO}_3(\text{aq}) + 2\text{HNO}_3(\text{aq}) &\to 2\text{KNO}_3(\text{aq}) + \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \text{K}_2\text{CO}_3(\text{aq}) + \text{H}_2\text{SO}_4(\text{aq}) &\to \text{K}_2\text{SO}_4(\text{aq}) + \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \text{The general ionic equation for the above reactions is:} \\ \text{CO}_3^{2^-}(\text{aq}) + 2\text{H}^+(\text{aq}) &\to \text{H}_2\text{O}(1) + \text{CO}_2(g) \\ \end{split}
```

In a similar way, when sodium hydrogenearbonate or potassium hydrogenearbonate is titrated against a mineral acid such as hydrochloric acid, nitric acid or sulphuric acid using methyl orange indicator, the metal hydrogenearbonate undergoes complete neutralisation to form the corresponding salt, water plus carbon dioxide gas.

```
\begin{array}{c} NaHCO_{3}(aq) + HCl(aq) \rightarrow NaCl(aq) + H_{2}O(l) + CO_{2}(g) \\ NaHCO_{3}(aq) + HNO_{3}(aq) \rightarrow NaNO_{3}(aq) + H_{2}O(l) + CO_{2}(g) \\ 2NaHCO_{3}(aq) + H_{2}SO_{4}(aq) \rightarrow Na_{2}SO_{4}(aq) + 2H_{2}O(l) + 2CO_{2}(g) \\ KHCO_{3}(aq) + HCl(aq) \rightarrow KCl(aq) + H_{2}O(l) + CO_{2}(g) \\ KHCO_{3}(aq) + HNO_{3}(aq) \rightarrow KNO_{3}(aq) + H_{2}O(l) + CO_{2}(g) \\ 2KHCO_{3}(aq) + H_{2}SO_{4}(aq) \rightarrow K_{2}SO_{4}(aq) + 2H_{2}O(l) + 2CO_{2}(g) \\ The general ionic equation for the above reactions is: \\ HCO_{3}(aq) + H^{+}(aq) \rightarrow H_{2}O(l) + CO_{2}(g) \end{array}
```

Complex mixtures in which sodium carbonate, potassium carbonate, sodium hydrogencarbonate or Potassium hydrogencarbonate is one of the components of the mixture, are analyzed by titrating them against a standard solution of a mineral acid using both phenolphthalein and methyl orange indicator using two methods. The two methods are: **The Continuous Method** where the two different indicators are used concurrently and **The Two Step Method** where the two different indicators are used separately. **Note:** A lot of careshould be taken while dealing with calculations for double indicator titration experiments in which the procedures involve dilution of one of the solutions to prepare another solution which is actually used in the titration. (For instance in worked out examples 3.3.1.2,3.3.1.3, 3.3.3.2.and 3.3.3.3 plus practicle exercises 3.3.2.3,3.3.2.4, 3.3.4.5 and 3.3.4.6).

A) The Continuous Method (Using the Two Indicators Concurrently)

In the continuous method, an aliquot (a portion) of the mixture is pipetted and titrated against a standard mineral acid using phenolphthalein indicator and the volume, V_I of the mineral acid required to reach the end point is noted.

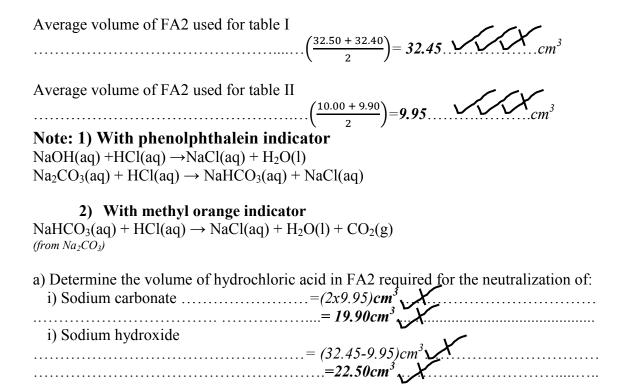
Without pouring the solution in the conical flask, 2-3 drops of methyl orange indicator are added and the titration continued using the same standard mineral acidand the volume, V_2 of the mineral acid required to reach the end point is noted.

3.3.1Worked out Examples on Double Indicator Titrations using the Continuous Method (Using the Two Indicators Concurrently)

Worked out example 3.3.1.1

You are provided with the following:

FA1 which is a mixture of sodium hydroxide and sodium carbonate


FA2 which is a solution of 0.2M hydrochloric acid

You are required to determine the concentrations of sodium hydroxide and sodium carbonate in grams per litre and hence the percentage of sodium hydroxide in the mixture.

Procedure

Pipette 25 or 20cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA2 from the burette until the end point is reached. Record your results in table I below and then add 2-3 drops of methyl orange indicator to the resultant solution and continue the titration with FA2until the end point is reached. Record your results in table II below. Repeat the titrations until you obtain consistent results.

	Table I			Table II		
Burette readings	(With Phenolphthalein indicator)			(With Met	hyl orange inc	dicator)
Final burette reading (cm ³)	32.70	32.50	34.40	42.90	42.50	44.30
Initial burette reading(cm ³)	0.00	0.00	2.00	32.70	32.50	34.40
Volume of FA2(cm ³)	32.70	32.50	32.40	10.20	10.00	9.90
		VX	VX		VX	VX

b) Calculate the concentration of sodium carbonate in FA1 in grams per litre.

1000cm³ of FA2 contain 0.2moles of hydrochloricacid

19.90cm³ of FA2 contain
$$\left(\frac{0.2}{1000} \times 19.90\right)$$
 moles of hydrochloricacid = 0.00398 moles of hydrochloricacid

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$$

Moles of sodium carbonate =
$$\left(\frac{1}{2} \times 0.00398\right)$$
 $= 0.00199$

25cm³ of FA1 contain 0.00199 moles of sodium carbonate

1000 cm³ of FA1 contain
$$\left(\frac{0.00199}{25} \times 1000\right)$$
 moles of sodium carbonate = 0.0796 mol t^{-1}

$$\simeq 0.08 \text{ mol } l^{-1}$$

$$\approx 0.08 \text{ mol } t$$

Molar Mass of Na₂CO₃= $[(23x2)+(12x1)+(16x3)]=106g$

1 mole of sodium carbonate weighs 106g

c) Determine the concentration of sodium hydroxide in FA1 in grams per litre.

1000cm³ of FA2 contain 0.2moles of hydrochloric acid

22.50cm³ of FA2 contain
$$\left(\frac{0.2}{1000} \times 22.50\right)$$
 moles of hydrochloric acid

$$= 0.0045$$
 moles of hydrochloric acid

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

Moles of sodium hydroxide = (1xmoles of hydrochloric acid)

$$= (1x0.0045)$$
 $= 0.0045$

25cm³ of FA1 contain 0.0045 moles of sodium hydroxide

$$1000cm^3$$
 of FA1 contain $\left(\frac{0.0045}{25} \times 1000\right)$ moles of sodium hydroxide $= 0.18$ mol Γ^1

Molar Mass of NaOH= $[(23x) + (16x1) + (1x1)]$

Molar Mass of NaOH=
$$\lceil (23x) + (16x1) + (1x1) \rceil \lambda$$

1 mole of sodium hydroxide weighs 40g
0.18 moles of sodium hydroxide weigh
$$(40x0.18) = 7.2gl^{-1}$$

d) Determine the percentage of sodium hydroxide in the FA1 mixture.

Total mass of FA1 mixture per litre =
$$(8.48 + 7.2)$$
 5.68g

Percentage of sodium hydroxide =
$$\left(\frac{7.2}{15.68} \times 100\right)\%$$

Note: For mixtures containing either sodium carbonate or potassium carbonate, while establishing their mole ratio of reaction with a particular acid, we write a balanced equation for their **reaction for complete neutralization** by that particular acid after which we proceed with the calculation of the moles just as shown in part (b) above.

Worked out example 3.3.1.2

You are provided with the following:

FA1 which is a mixture of sodium hydroxide and sodium carbonate

FA2 which is a solution of 0.1Mhydrochloric acid

You are required to determine the percentage of sodium carbonate in the FA1 mixture. (Na=23, C=12, O=16, H=1)

Procedure:

- i) By use of a measuring cylinder, measure and transfer 100cm³ of FA1 into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the resultant solution FA3.
- ii) Pipette 25 or 20cm³ of FA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA2 from the burette until the end point is reached. Record your results in table I below and then add 2-3 drops of methyl orange indicator to the resultant solution and continue the titration with FA2 until the end point is reached. Record your results in table II below. Repeat the titration until you obtain consistent results.

	Table I			Table II (With Methyl orange indicator)		
Burette readings	(With Phen	(With Phenolphthalein indicator)			yl orange inc	dicator)
Final burette reading (cm ³)	27.90	28.80	27.80	40.50	41.30	40.30
Initial burette reading(cm ³)	0.00	1.00	0.00	27.90	28.80	27.80
Volume of FA2(cm ³)	27.90	27.80	27.80	12.60	12.50	12.50
		- XX	XX	•	XX	VX

$$\left(\frac{27.80 + 27.80}{2}\right) \dots = 27.80 \dots \text{cm}^3$$

a) Determine the volume of hydrochloric acid in FA2 required for the neutralisation of:

i) sodium carbonate
$$(2x12.50) = 25.00$$
 cm

b) Calculate the concentration of:

(i)sodium carbonate in FA1 in gdm⁻³.

1000cm³ of FA2 contain 0.1moles of hydrochloric acid

25.00cm³ of FA2 contain
$$\left(\frac{0.1}{1000} \times 25.00\right)$$
 mores of hydrochloric acid = 0.0025 moles of hydrochloric acid

```
Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(q)
    Moles of Sodium carbonate = (\frac{1}{2} \times 1) xmoles of hydrochloric acid)
                                      = (\frac{1}{2} \times 0.0025)
    25cm<sup>3</sup> of FA3 contain 0.00125 moles of sodium carbonate
    250cm^3 of FA3 contain \left(\frac{0.00125}{25} \times 250\right) works of sodium carbonate
                                    = 0.0125 moles of sodium carbonate
    100cm<sup>3</sup> of FA1 contain 0.0125 moles of sodium carbonate
    1000cm^3 of FA1 contain \left(\frac{0.0125}{100} \times 1000\right) mores of sodium carbonate
           Molar Mass of Na_2CO_3 = \lceil (23x2) + (12x1) + (16x3) \rceil = 106g
    1 mole of sodium carbonate weighs 106g
    0.125 moles of sodium hydroxide weigh (106 x0.125)g
    (ii) sodium hydroxide in FA1 in gdm<sup>-3</sup>
    1000cm<sup>3</sup> of FA2 contain 0.1moles of hydrochloric acid
    15.30cm<sup>3</sup> of FA2 contain \left(\frac{0.1}{1000} \times 15.30\right) woles of hydrochloric acid
                                 =0.00153 moles of hydrochloric acid
    NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)
    Moles of sodium hydroxide = (1xmoles of hydrochloric acid)
                                     = (1x0.00153)
    25cm<sup>3</sup> of FA3 contain 0.00153 moles of sodium hydroxide
    250cm^3 of FA3 contain \left(\frac{0.00153}{25} \times 250\right) notes of sodium hydroxide
                                    = 0.0153 moles of sodium hydroxide
    100cm<sup>3</sup> of FA1 contain 0.0153 moles of sodium hydroxide
    1000cm<sup>3</sup> of FA1 contain \left(\frac{0.0153}{100} \times 1000\right) moves of sodium hydroxide = 0.153 \text{ mol } l^{-1}
    Molar Mass of NaOH= [(23x) + (16x1) + (1x1)] = 40g
    1 mole of sodium hydroxide weighs 40g
    0. 153 moles of sodium hydroxide weigh (40x0.153)g
c) Determine the percentage of sodium carbonate in the FA1 mixture.
        Total mass of FA1 mixture per litre = (13.25 + 6.12) = 19.37g
```

Percentage of sodium carbonate= $\left(\frac{13.25}{19.37} \times 100\right)\%$ = 68.40%

Worked out example 3.3.1.3

GA1 which is a mixture of sodium hydrogencarbonate and sodium carbonate

GA2 which is a solution of 0.1M sulphuric acid

You are required to determine the concentration of sodium hydrogencarbonate and sodium carbonate in GA1 in g I^{-1} . (Na=23, C=12, O=16, H=1)

Procedure:

- i) Using a measuring cylinder, measure and transfer 80cm³ of GA1 into a clean beaker. To the solution in the beaker, add 120cm³ of distilled water. Label the resultant solution GA3
- ii) Pipette 25 or 20cm³ of GA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with GA2 from the burette until the end point is reached. Record your results in table I below and then add 2-3 drops of methyl orange indicator to the resultant solution and continue the titration with GA2 until the end point is reached. Record your results in table II below. Repeat the titration until you obtain consistent results.

Burette readings	Table I (With Phenolphthalein indicator)						ndicator)
Final burette reading (cm ³)	12.30	14.20	12.20	42.30	44.30	42.20	
Initial burette reading(cm ³)	0.00	2.00	0.00	12.30	14.20	12.20	
Volume of GA2(cm ³)	12.30	12.20	12.20	30.00	30.10	30.00	
		\X	XX	I	\XX	4X	

Average volume of GA2 used for table I

$$\left(\frac{12.20 + 12.20}{2}\right) = 12.20$$
 cm³

Average volume of GA2 used for table II

$$\left(\frac{30.00 + 30.00}{2}\right) = 30.00$$
 cm³

a) Determine the volume of sulphuric acid in GA2 required for the neutralisation of:

i) sodium carbonate.
$$(2x12.20) = 24.40$$
 cm

ii) sodium hydrogencarbonate.

- b) Calculate the concentration of:
 - (i) sodium carbonate in GA1 in g l⁻¹.

1000cm³ of GA2 contain 0.1 moles of sulphuric acid

24.40cm³ of GA2 contain
$$\left(\frac{0.1}{1000} \times 24.40\right)$$
 motes of sulphuric acid

```
= 0.00244moles of sulphuric acid
Na_2CO_3(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + H_2O(l) + CO_2(q)
Moles\ of\ sodium\ carbonate = (1\ xmoles\ of\ sulphuric\ acid)
                                = (1x \ 0.00244), X
25.0cm<sup>3</sup> of GA3 contain 0.00244 moles of sodium carbonate
200cm^3 of GA3 contain \left(\frac{0.00244}{25.0} \times 200\right) woles of sodium carbonate
                                 = 0.01952moles of sodium carbonate
80cm<sup>3</sup> of GA1 contain 0.01952moles of sodium carbonate
1000cm^3 of GA1 contain \left(\frac{0.01952}{80} \times 1000\right) woles of Sodium carbonate
                                  = 0.244 \text{ mol } l^{-1}
Molar Mass of Na<sub>2</sub>CO<sub>3</sub>= [(23x2) + (12x1) + (16\bar{x}3)] = 106g
1 mole of sodium carbonate weighs 106g
0.244 moles of sodium hydroxide weigh (106 x0.244)
                                              = 25.864gI
(ii) sodium hydrogencarbonate in GA1 in g l<sup>-1</sup>.
1000cm<sup>3</sup> of GA2 contain 0.1 moles of sulphuric acid
17.80cm<sup>3</sup> of GA2 contain \left(\frac{0.1}{1000} \times 17.80\right) woles of sulphuric acid
                               = 0.00178moles of sulphuric acid
2NaHCO_3(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l) + 2CO_2(g)
Moles of Sodium hydrogencarbonate = (2 \text{ xmoles of sulphuric acid})
                                           = (2x \ 0.00178)
                                              = 0.00356
25.0cm<sup>3</sup> of GA3 contain 0.00356 moles of sodium carbonate
200cm^3 of GA3 contain \left(\frac{0.00356}{25.0} \times 200\right) moles of sodium carbonate
                              = 0.0285 moles of sodium carbonate
80cm<sup>3</sup> of GA1 contain 0.0285moles of sodium carbonate
1000cm^3 of GA1 contain \left(\frac{0.0285}{80} \times 1000\right) where of sodium carbonate
                                  = 0.356 \ mol \ l^{-1}
       Molar Mass of NaHCO<sub>3</sub>= [(23x1) + (1x1) + (12x1) + (16x3)] = 84g
1 mole of sodium hydrogencarbonate weighs 84g
0.356 moles of sodium hydrogenearbonate weigh (84 x0.356)g = 29.904gl^{-1}
```

3.3.2 Practical Exercises on Double Indicator Titrations using the Continuous Method(Using the Two Indicators Concurrently)

Experiment 3.3.2.1

You are provided with the following:

FA1 which is a solution of 0.3Mhydrochloric acid

FA2 which is a mixture of potassium hydroxide and potassium carbonate

You are required to determine the concentrations of potassium carbonate in gdm^3 and hence the percentage of potassium hydroxide in the FA2 mixture.

(K=39, C=12, O=16, H=1)

Procedure:

Pipette 25 or 20cm³ of FA2 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA1 from the burette until the end point is reached. Record your results in table I below and then add 2-3 drops of methyl orange indicator to the resultant solution and continue the titration with FA1 until the end point is reached. Record your results in table II below. Repeat the titration until you obtain consistent results.

Burette readings	Table I (With Phenolphthalein indicator)				icator)
Final burette reading (cm ³)					
Initial burette reading(cm ³)					
Volume of FA1(cm ³)					

Average volume of FA1 used for table I
cm
Average volume of FA1used for table II
cm
Note: 1) With phenolphthalein indicator
$KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$
$K_2CO_3(aq) + HCl(aq) \rightarrow KHCO_3(aq) + KCl(aq)$
2) With methyl orange indicator
$KHCO_3(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l) + CO_2(g)$ (from K_2CO_3)
a) Determine the volume of hydrochloric acid in FA1required for the neutralization of:
i) potassium carbonate.

ii) potassi	ium hydroxide					
b)Calculate	the concentrate	ion of potassiur	n carbonate ir	FA2 in gdm ⁻³	3	
•••••						
•••••				• • • • • • • • • • • • • • • • • • • •		
		e of potassium				 •••
•••••						

Experiment 3.3.2.2

You are provided with the following:

FA1 which is a solution of 0.2Mnitric acid

FA2 which is a mixture of sodium carbonate and sodium hydrogencarbonate

You are required to determine the concentrations of sodium carbonate and sodium hydrogencarbonate in gdm⁻³ and hence the percentage of sodium hydrogencarbonatein the FA2 mixture.

(Na=23, C=12, O=16, H=1)

Procedure

Pipette 25 or 20cm³ of FA2 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA1 from the burette until the end point is reached. Record your results in table I below and then add 2-3 drops of methyl orange indicator to the resultant solution and continue the titration with FA1until the end point is reached. Record your results in table II below. Repeat the titrations until you obtain consistent results.

	Table I			Table II				
Burette readings	(With phenolphthalein indicator)		(With methyl orange indicat		licator)			
Final burette reading (cm ³)								
Initial burette reading(cm ³)								
Volume of FA1(cm ³)								

Volume of pipette used......cm³

Average volume of FA1 used for table I:
Average volume of FA1used for table II
Note: 1) With phenolphthalein indicator
$Na_2CO_3(aq) + HNO_3(aq) \rightarrow NaHCO_3(aq) + NaNO_3(aq)$
$NaHCO_3(aq) + HNO_3(aq) \rightarrow No \ reaction \ occurs$
2) With methyl orange indicator
$NaHCO_3(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l) + CO_2(g)$
(Initially present in FA2)
$NaHCO_3(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l) + CO_2(g)$ $(from\ Na_2CO_3)$
a) Determine the volume of nitric acid in FA1required for the neutralisation of: i) sodium carbonate
ii) sodium hydrogencarbonate
b)Calculate the concentration of sodium carbonate in FA2 in gdm ⁻³

(c) Determine the concentration	of sodium l	nydrogenca	rbonate inth	e FA2 mixtu	re in gdm ⁻³	
			•••••			
(d) Calculate the percentage of						
	-	_				
FA2 which is a solution of 0.15 You are required to determine (Na=23, C=12, O=16, H=1) Procedure: i) By use of a measuring cylin and make up to the mark wi ii) Pipette 25 or 20cm ³ of FA3 and titrate with FA2 from the below and then add 2-3 drog titration with FA2 until the	der, measure th distilled v into a clean ne burette un os of methyl	e and transf water. Labe conical flas til the end p	Fer 100cm ³ of the resultands. Add 2-3 point is reaction to the	of FA1 into a nt solution FA drops of phe hed. Record resultant sol	250cm ³ vol A3. nolphthalei your results ution and c	n indicator s in table I ontinue the
titration until you obtain con	_		J			1
Volume o	of pipette use	ed			cm ³	
		Table I			Table II	
Burette readings Final burette reading (am ³)	(With pheno	olphthalein i	ndicator)	(With methy	yl orange ind	licator)
Final burette reading (cm ³)						
Initial burette reading(cm ³)						
Volume of FA2 (cm ³)			1			

Average volume of FA2 used for table I	3
Average volume of FA2used for table II	
a) Determine the volume of hydrochloric acid in FA2 required for the neutralisation of: i) sodium carbonate	ก ั
ii) sodium hydroxide	
d) Calculate the concentration of: (i) sodium carbonate in FA1 in gdm ⁻³ .	
(ii) sodium hydroxide in FA1 in gdm ⁻³ .	

A Simp	<i>J</i> 11	o A' Level Chen	usiry Fracia	icuis	
) Determine the percentage					••••
·····					
a are provided with the following which is a mixture of sod which is a solution of 0.1 are required to determine	ium carbonate and M nitric acid	, ,		e in GA1.	
are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1)	ium carbonate and Mnitric acid the percentage of	sodium hydrog	encarbonat		
periment 3.3.2.4 u are provided with the followare which is a mixture of sod and are required to determine at 23, C=12, O=16, H=1) Decedure: Using a measuring cylinder, the beaker, add 100cm ³ of dispersions.	ium carbonate and Mnitric acid the percentage of measure and transf	fer 100cm ³ of G	encarbonate A1 into a clo	ean beaker. To the so	lut
a are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1) becedure: sing a measuring cylinder, the beaker, add 100cm ³ of distributed by the beaker of GA3 and 2-3 drops of methyl of 2 until the end point is reaction.	ium carbonate and Mnitric acid the percentage of measure and transfestilled water. Labelinto a clean conicate until the end porange indicator to the manage indicator to the m	fer 100cm ³ of G. el the resultant so al flask. Add 2-3 int is reached. Rethe resultant solution	A1 into a cleolution GA3 drops of phecord your attion and co	ean beaker. To the so B. nenolphthalein indica results in table I belo ntinue the titration w	tor w a
a are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1) becedure: sing a measuring cylinder, ne beaker, add 100cm ³ of divided the with GA2 from the bureth add 2-3 drops of methyl of 2 until the end point is reaction consistent results.	ium carbonate and Mnitric acid the percentage of measure and transfestilled water. Labelinto a clean conicate until the end porange indicator to the manage indicator to the m	fer 100cm ³ of G. el the resultant so int is reached. Rethe resultant solutions in table II	A1 into a cleolution GA3 drops of phecord your attion and collibelow. Rep	ean beaker. To the so 3. nenolphthalein indica results in table I belo ntinue the titration w beat the titration until	tor w a
a are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1) A second of the determine of the beaker, add 100cm ³ of distributed and 2-3 drops of methyl of 2 until the end point is reaction consistent results.	measure and transfit stilled water. Labelinto a clean conicate until the end porange indicator to the hed. Record your results and porange indicator to the hed. Tale	fer 100cm ³ of Gall the resultant solution is reached. Resultant solutions in table II	A1 into a cleolution GA3 drops of phecord your attion and cobelow. Rep	ean beaker. To the so a second phthalein indicates a second phthalein indicates are sults in table I below the titration whereat the titration until the second peat the titration until the second peat the s	tor w a
are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1) cedure: sing a measuring cylinder, he beaker, add 100cm³ of distinct the with GA2 from the bureth add 2-3 drops of methyl of 2 until the end point is reaction consistent results. Volume	measure and transfit stilled water. Label into a clean conicate until the end porange indicator to the hed. Record your roof pipette used	fer 100cm ³ of Gall the resultant solution is reached. Resultant solutions in table II	A1 into a cleolution GA3 drops of phecord your attion and cobelow. Rep	ean beaker. To the so it is a constant of the so	tor w a
are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1) cedure: sing a measuring cylinder, he beaker, add 100cm³ of distributed as the with GA2 from the burse and 2-3 drops of methyl of 2 until the end point is reaction consistent results. Volume	measure and transfit stilled water. Labelinto a clean conicate until the end porange indicator to the hed. Record your results and porange indicator to the hed. Tale	fer 100cm ³ of Gall the resultant solution is reached. Resultant solutions in table II	A1 into a cleolution GA3 drops of phecord your attion and cobelow. Rep	ean beaker. To the so a second phthalein indicates a second phthalein indicates are sults in table I below the titration whereat the titration until the second peat the titration until the second peat the s	tor w a
a are provided with the follows a mixture of sod which is a solution of 0.1 are required to determine =23, C=12, O=16, H=1) becedure: Using a measuring cylinder, the beaker, add 100cm ³ of distributed and 2-3 drops of methyl of 2 until the end point is reaching consistent results.	measure and transfit stilled water. Labelinto a clean conicate until the end porange indicator to the hed. Record your results and porange indicator to the hed. Tale	fer 100cm ³ of Gall the resultant solution is reached. Resultant solutions in table II	A1 into a cleolution GA3 drops of phecord your attion and cobelow. Rep	ean beaker. To the so a second phthalein indicates a second phthalein indicates are sults in table I below the titration whereat the titration until the second peat the titration until the second peat the s	tor w a

Average volume of GA2 used for table II
a) Determine the volume of nitric acid in GA2 required for the neutralisation of: i) sodium carbonate
ii) sodium hydrogencarbonate
b) Calculate the concentration of: (i) sodium carbonate in GA1 in gl ⁻¹ .
(ii) sodium hydrogencarbonate in GA1 in gl ⁻¹ .

	, tett 11pp i ot	ich iv A L	evei Cnemis	stry Practica	us	
c) Determine the percentage of s	sodium hyd					
Experiment 3.3.2.5 You are provided with the follow	ving:					
HA1 which is a mixture of sodium HA2 which is a solution of 0.1 Now are required to determine to the HA1 in gdm ⁻³ .	ım hydroge: 1 sulphuric	acid			ate and sodi	ium hydroxid
(Na=23, C=12, O=16, H=1)						
Procedure: (1) Using a measuring cylinder, meake up to the mark with distilled in Pipette 25 or 20cm ³ of HA3 is and titrate with HA2 from the burned then add 2-3 drops of methy with HA2 until the end point is revou obtain consistent results.	ed water. La nto a clean ou rette until to dorange income reached. Rec	abel the rest conical flast the end point dicator to the cord your re	ultant soluti sk. Add 2-3 nt is reached ne resultant s esults in tab	on HA3. drops of phe l. Record yo solution and	nolphthalein ur results in continue th Repeat the t	n indicator table I belove titration
	ed water. La nto a clean ourette until to d orange increached. Rec	abel the resconical flasche end point dicator to the cord your red	ultant soluti sk. Add 2-3 nt is reached ne resultant s esults in tab	on HA3. drops of phe l. Record you solution and le II below.	enolphthaleinur results in continue the Repeat the terms	n indicator table I below e titration citration until
Procedure: i) Using a measuring cylinder, meake up to the mark with distilled ii) Pipette 25 or 20cm³ of HA3 is and titrate with HA2 from the buand then add 2-3 drops of methy with HA2 until the end point is regou obtain consistent results. Volume of Burette readings	ed water. La nto a clean ourette until to d orange increached. Rec	abel the rest conical flast the end point dicator to the cord your re	ultant soluti sk. Add 2-3 nt is reached ne resultant s esults in tab	on HA3. drops of phe l. Record you solution and le II below.	enolphthalein or results in continue th Repeat the t	n indicator table I below e titration citration until
Procedure: i) Using a measuring cylinder, meake up to the mark with distilled ii) Pipette 25 or 20cm³ of HA3 is and titrate with HA2 from the buand then add 2-3 drops of methy with HA2 until the end point is reasonable to be a solution of the second sec	ed water. La nto a clean ourette until to d orange increached. Rec	abel the resconical flasche end point dicator to the cord your red	ultant soluti sk. Add 2-3 nt is reached ne resultant s esults in tab	on HA3. drops of phe l. Record you solution and le II below.	enolphthaleinur results in continue the Repeat the terms	n indicator table I below e titration citration until
Procedure: i) Using a measuring cylinder, meake up to the mark with distilled ii) Pipette 25 or 20cm³ of HA3 is and titrate with HA2 from the buand then add 2-3 drops of methy with HA2 until the end point is regou obtain consistent results. Volume of Burette readings	ed water. La nto a clean ourette until to d orange increached. Rec	abel the resconical flasche end point dicator to the cord your red	ultant soluti sk. Add 2-3 nt is reached ne resultant s esults in tab	on HA3. drops of phe l. Record you solution and le II below.	enolphthaleinur results in continue the Repeat the terms	n indicator table I below e titration citration until

Average volume of HA2 used for table II	
a) Determine the volume of sulphuric acid in HA2 required for the neutralisation of: i) sodium hydroxide	
ii) sodium hydrogencarbonate	
	•••
b) Calculate the concentration of: (i) sodium hydroxide in HA1 in g dm ⁻³ .	••
	• •
	••
	• •
	•••
(ii) sodium hydrogencarbonate in HA1 in g dm ⁻³ .	
	• •
	• •
	• •
	••

A Simplified Ap	proach to A' Le	vel Chemistry Practic	eals
B) The Two Step Method(Using In the Two Step method, an aliquot (a mineral acid using phenolphthalein indithe end point is noted.	portion) of the nicator and the vo	nixture is pipetted and lume, V_3 of the minera	titrated against a standard l acid required to reach
The solution in the conical flask is then is pipetted into the clean conical flask, it itratedagainst the same standard miner the end point is noted.	2-3 drops of Met	thyl orange indicator a	re added and the aliquot
3.3.3Worked out Examples on I Method(Using the Two Indicate			ng the Two Step
Worked out example 3.3.3.1 You are provided with the following: FA1 which is a mixture of sodium hydroder which is a solution of 0.2Mhydroder are required to determine the configrams per litre. (Na=23, C=12, O=16, 1)	chloric acid centrations of se		sodium carbonate in
Procedure I Pipette 25 or 20cm ³ of FA1 into a clear titrate with FA2 from the burette until t consistent results. Record your results in table I below.			
Volume of p	ipette used	25.0	cm ³
Table I (With phenolphthalein in	dicator)		
Final burette reading (cm ³)	22.40	22.20	32.20
Initial burette reading(cm ³)	0.00	0.00	10.00
Volume of FA2(cm ³)	22.40	22.20	22.20
Average volume of FA2 used for table	I	$\left(\frac{22.20+22.20}{2}\right)=22.20$.	cm ³

Procedure II

Pipette 25 or 20 cm³ of FA1 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table II below.

Table II (With methyl orange indicator)

Final burette reading (cm ³)	31.40	31.20	39.10
Initial burette reading(cm ³)	0.00	0.00	8.00
Volume of FA2(cm ³)	31.40	31.20	31.10

Average volume of FA2 used for table II

Note: 1) With phenolphthalein indicator

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

 $Na_2CO_3(aq) + HCl(aq) \rightarrow NaHCO_3(aq) + NaCl(aq)$

2) With methyl orange indicator

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

 $Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$

a)Determine the volume of hydrochloric acid in FA2 required for the complete neutralization of:

- i) sodium carbonate = $2(31.15-22.20)cm^3$ $= (2x8.95)cm^{3}$ $= 17.90cm^{3}$ ii) sodium hydroxide $= (31.15-17.90)cm^{3}$
- $=13.25cm^3$
- b) Calculate the concentration of sodium carbonate in FA1 in grams per litre.

1000cm³ of FA2 contain 0.2moles of hydrochloric acid

$$17.90$$
cm³ of FA2 contain $\left(\frac{0.2}{1000} \times 17.90\right)$ moles of hydrochloric acid $= 0.00358$ moles of hydrochloric acid

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$$

Moles of sodium carbonate =
$$\frac{1}{2}x$$
 moles of hydrochloric acid
Moles of sodium carbonate = $\frac{1}{2}x 0.00358$

Moles of sodium carbonate =
$$\frac{1}{2} \times 0.00358$$

= 0.00179 moles of sodium carbonate

25cm³ of FA1 contain 0.00179 moles of sodium carbonate

$$1000 \text{ cm}^3 \text{ of } FA1 \text{ contain} \left(\frac{0.00179}{25} \times 1000\right) \text{ modes of sodium carbonate}$$

= $0.0716 \text{ mol } l^{-1}$

Molar mass of
$$Na_2CO_3 = [(23x2) + (12x1) + (16x3)] = 106g$$

1 mole of sodium carbonate weighs 106g

0.08 moles of sodium carbonate weigh (106x0.0716)g
$$=7.59g\Gamma^1$$

c) Determine concentration of sodium hydroxide in FA1 in grams per litre.

1000cm³ of FA2 contain 0.2moles of hydrochloric acid

13.25cm³ of FA2 contain
$$\left(\frac{0.2}{1000} \times 13.25\right)$$
 woles of hydrochloric acid =0.00265 moles of hydrochloric acid

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

Moles of sodium hydroxide = (1xmoles of hydrochloric acid)

$$= (1x0.00265)$$

$$= 0.00265$$

25cm³ of FA1 contain 0.00265 moles of sodium hydroxide

1000cm³ of FA1 contain
$$\left(\frac{0.00265}{25} \times 1000\right)$$
 motes of sodium hydroxide per litre = 0.106 mol l^{-1}

Molar Mass of NaOH=
$$[(23x) + (16x1) + (1x1)] = 40g$$

1 mole of sodium hydroxide weighs 40g

0.18 moles of sodium hydroxide weigh (40x0.106)

Worked out example 3.3.3.2

You are provided with the following:

HA1 which is a solution of 0.1Mhydrochloric acid

HA2 which is a mixture of sodium hydroxide and sodium carbonate

You are required to determine the percentage of sodium carbonate in the HA1 mixture. (Na=23, C=12, O=16, H=1)

Procedure I

- i) By use of a measuring cylinder, measure and transfer 100cm³ of HA2 into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the resultant solution HA3.
- ii) Pipette 25 or 20cm³ of HA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with HA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results.

Record your results in table I below.

Table I (With Phenolphthalein indicator)

1 doic 1 (17 this 1 inchorphinalical	i indicator)		
Final burette reading (cm ³)	20.10	22.00	24.00
Initial burette reading(cm ³)	0.00	2.00	4.00
Volume of HA1(cm ³)	20.10	20.00	20.00
		\/X	\ / X

Average volume of HA1 used for table I $\frac{20.00 + 20.00}{2} = 20.00.$ cm^3

Procedure II

Pipette 25 or20cm³ of HA3 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with HA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results.Record your results in table II below.

Volume of pipette used. 25.0 cm²

Table II (With Methyl orange indicator)

Tuble II (With Meinyl brunge	muicuioi)		
Final burette reading (cm ³)	30.40	36.20	30.10
Initial burette reading(cm ³)	0.00	6.00	0.00
Volume of HA1(cm ³)	30.40	30.20	30.10
·	VX		

Average volume of HA1 used for table II

$$\left(\frac{30.20 + 30.10}{2}\right) = 30.15$$
 cm³

- a) Determine the volume of hydrochloric acid in HA1 required for the complete neutralisation of:
- i) sodium carbonate 2(30.15-20.00)...=...(2x10.15)...=..20.30. cm³
- b) Calculate the concentration of:
 - i) sodium carbonate in HA2 in grams per litre.

1000cm³ of HA1 contain 0.1moles of hydrochloric acid 20.30cm³ of HA1 contain 0.1 x 20.30cm of hydrochloric acid 1000

$$= 0.00203$$
 moles of hydrochloric acid $Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$ Moles of sodium carbonate $= (\frac{1}{2} \text{ xmoles of hydrochloric acid})$

$$= (\frac{1}{2} \times 0.00203)$$

$$= 0.001015$$

25cm³ of HA3 contain 0.001015 moles of sodium carbonate

$$250cm^3$$
 of HA3 contain $\left(\frac{0.001015}{25} \times 250\right)$ works of sodium carbonate = 0.01015 moles of sodium carbonate

100cm³ of HA2 contain 0.01015 moles of sodium carbonate

$$1000cm^3$$
 of HA2 contain $\left(\frac{0.01015}{100} \times 1000\right)$ moves of sodium carbonate = 0.1015 mol Γ^{-1}

Molar Mass of
$$Na_2CO_3 = [(23x2) + (12x1) + (16x3)] = 106g$$

1 mole of sodium carbonate weighs 106g 0.1015 moles of sodium hydroxide weigh (106 x0.1015)g \ $= 10.76 \text{ gl}^{-1}$ ii) sodium hydroxide in HA2 in grams per litre. 1000cm³ of HA1 contain 0.1moles of hydrochloric acid 9.85cm³ of HA1 contain $\left(\frac{0.1}{1000} \times 9.85\right)$ notes of hydrochloric acid = 0.000985 moles of hydrochloric acid $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$ Moles of sodium hydroxide = (1xmoles of hydrochloric acid)= (1x0.000985)= 0.00098525cm³ of HA3 contain 0.000985 moles of sodium hydroxide $250cm^3$ of HA3 contain $\left(\frac{0.000985}{25} \times 250\right)$ metes of sodium hydroxide = 0.00985moles of sodium hydroxide 100cm³ of HA2 contain 0.00985moles of sodium hydroxide 1000cm³ of HA2 contain <u>0.00985</u>x 1000 toles of sodium hydroxide $= 0.0985 \text{ mol } l^{-1}$ Molar Mass of NaOH= [(23x) + (16x1) + (1x1)] = 401 mole of sodium hydroxide weighs 40g 1 mole of sodium hydroxide weighs 40g 0.0985 moles of sodium hydroxide weigh (40x0.0985)g

c) Determine the percentage of sodium carbonate in the HA2 mixture.

Total mass of FA1 mixture per litre =
$$(10.76 + 3.94)g$$
\\
=14.70g

Percentage of sodium carbonate = $\left(\frac{10.76}{14.70} \times 100\right)\%$ \\
= 73.20%

Worked out example 3.3.3.3

FA1 which is a mixture of sodium carbonate and sodium hydrogencarbonate

FA2 which is a solution of 0.1Mnitric acid

You are required to determine the percentage of sodium hydrogenearbonate in FA1. (Na=23, C=12, O=16, H=1)

Procedure I

- i) By use of a measuring cylinder, measure and transfer 125cm³ of FA1 into a clean beaker. Add 75cm³ of distilled water and label the resultant solution FA3.
- ii) Pipette 25 or 20cm³ of FA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I (With phenolphthalein indicator)

Tubic I (// till plicitotpititute)	n mucuoi,		
Final burette reading (cm ³)	12.20	14.00	16. 00
Initial burette reading(cm ³)	0.00	2.00	4.00
Volume of FA2(cm ³)	12.20	12.00	12.00
		- IA A	

Average volume of FA2 used for table I

Procedure II

Pipette 25 or20cm³ of FA3 into a clean conical flask. Add 2-3 drops of Methyl orange indicator and titrate with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table II below.

Table II (With methyl orange indicator)

Tuble 11 (With methyl brunge l	maicaior)		
Final burette reading (cm ³)	36.60	38.70	36.60
Initial burette reading(cm ³)	0.00	2.00	0.00
Volume of FA2(cm ³)	36.60	36.70	36.60
·		\/ X	1/1/

Average volume of FA2 used for table II

a) Determine the volume of nitric acid in FA2 required for the complete neutralisation of:

i) sodium carbonate (2x12.00) = 24.00 cm²

b) Calculate the concentration of:

i) sodium carbonate in FA1 in grams per litre.

 $1000cm^3$ of FA2 contain 0.1moles nitric acid $24.00cm^3$ of FA2 contain $\left(\frac{0.1}{1000} \times 24.00\right)$ moles of nitric acid = 0.0024 moles of nitric acid

$$Na_2CO_3(aq) + 2HNO_3(aq) \rightarrow 2NaNO_3(aq) + H_2O(l) + CO_2(g)$$

Moles of sodium carbonate = (
$$\frac{1}{2}$$
 xmoles of nitric acid)
= ($\frac{1}{2}$ x 0.0024)
= 0.0012
25.0cm³ of FA3 contain 0.0012 moles of sodium carbonate
200cm³ of GA3 contain ($\frac{0.0012}{25.0}$ x 200) notes of sodium carbonate
= 0.0096moles of sodium carbonate
125cm³ of FA1 contain 0.0096moles of sodium carbonate
1000cm³ of FA1 contain ($\frac{0.0096}{125}$ x 1000) notes of sodium carbonate
= 0.0768 mol I^{-1}
Molar Mass of Na₂CO₃= [(23x2) +(12x1) + (16x3)] = 106g
1 mole of sodium carbonate weighs 106g
0.0768 moles of sodium carbonate weigh (106 x0.0768)g
= 8.14g I^{-1}

ii) sodium hydrogencarbonate in FA1 in grams per litre.

$$1000 cm^3$$
 of FA2 contain 0.1 moles of nitric acid $12.60 cm^3$ of FA2 contain $\left(\frac{0.1}{1000} \times 12.60\right)$ moles of nitric acid $= 0.00126$ moles of nitric acid $NaHCO_3(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l) + CO_2(g)$ Moles of sodium hydrogencarbonate $= (l \text{ xmoles of nitric acid})$ $= (lx \ 0.00126)$ $= 0.00126$ $25.0 cm^3$ of FA3 contain 0.00126 moles of sodium hydrogencarbonate $200 cm^3$ of FA3 contain $\left(\frac{0.00126}{25.0} \times 200\right)$ moles of sodium hydrogencarbonate $= 0.01$ moles of sodium hydrogencarbonate $125 cm^3$ of FA1 contain 0.01 moles of sodium hydrogencarbonate $1000 cm^3$ of FA1 contain $\left(\frac{0.01}{125} \times 1000\right)$ moles of sodium hydrogencarbonate $= 0.08$ mol l^{-1} Molar Mass of $NaHCO_3 = [(23x1) + (1x1) + (12x1) + (16x3)] + 84g$

1 mole of sodium hydrogencarbonate weighs 84g
0.08 moles of sodium hydroxide weigh
$$(84 \times 0.08)g$$

= 6.72 gl^{-1}

c) Determine the percentage of sodium hydrogenearbonate in the FA1 mixture.

Total mass of FA1 mixture per litre =
$$(8.14+6.72) = 14.86g$$

Percentage of sodium hydrogencarbonate = $\left(\frac{6.72}{14.86} \times 100\right)\%$
= 45.22%

3.3.4 Practical Exercises on Double Indicator Titrations using the Two Step Method(Using the Two Indicators Separately)

Experiment 3.3.4.1 You are provided with the following FA1 which is 0.1M sulphuric actions FA2 which is a mixture of sodium be a with the following factor of the following factor of the factor of th	id hydroxide and sodium		
Procedure I Pipette 25or 20cm ³ of FA2 into a cl titrate with FA1 from the burette un consistent results. Record your results in table I below	til the end point is reac		
Volume of p	oipette used		cm ³
Table I (With phenolphthal	lein indicator)		
Final burette reading (cm ³)			
Initial burette reading(cm ³)			
Volume of FA1(cm ³)			
Average volume of FA1 used for ta			cm ³
Procedure II Pipette 25or 20cm ³ of FA2 into a clutitrate with FA1 from the burette unconsistent results.Record your results.	ean conical flask. Add til the end point is reac	2-3 drops of methyl of hed. Repeat the titration	range indicator and on until you obtain
Table II (With methyl oran	· -		
Final burette reading (cm ³)	,		
Initial burette reading(cm ³)			
Volume of FA1(cm ³)			
Average volume of FA1 used for t	able II		cm ³

Note: 1) With phenolphthalein indicator $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$				
$2Na_2CO_3(aq) + H_2SO_4(aq) \rightarrow 2NaHCO_3(aq) + Na_2SO_4(aq)$				
2) With methyl orange indicator $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$ $Na_2CO_3(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + H_2O(l) + CO_2(g)$				
a)Determine the volume of sulphuric acid in FA1 required for the complete neutralisation of: i) sodium carbonate.				
ii) sodium hydroxide.				
b)Calculate the concentration of sodium carbonate in FA2 in gdm ⁻³ .				
c)Determine the concentration of sodium hydroxide in FA2 in gdm ⁻³ .				

A Simplific	ed Approach to A	4' Level Chemistr	y Practicals	
d) Calculate the percentage of sodi	um carbonate in	FA2.		
				•••••
Experiment 3.3.4.2 You are provided with the followint FA1 which is 0.2Mnitric acid FA2which is a mixture of sodium be a required to determine the (Na=23, C=12, O=16, H=1) Procedure Pipette 25cm ³ of FA2 into a clean of with FA1 from the burette until the results. Record your results in tables	hydroxide and soon percentage of soon conical flask. Addeduced the conical flask and point is reacted to the conical flask.	d 2-3 drops of phe	rbonate in FA2. nolphthalein indicator and titra	
·			cm ³	
Table I (With phenolphthal	_			
Final burette reading (cm ³)				7
Initial burette reading(cm ³)				-
Volume of FA1(cm ³)				-
Average volume of FA1 used for ta	able I			cm ³
Volume of p	oipette used		cm ³	
Table II (With methyl orang	ge indicator)			7
Final burette reading (cm ³)				
Initial burette reading(cm ³)				

Average volume of FA1 used for table II	
	cm ³

Volume of FA1(cm³)

Note: 1) With phenolphthalein indicator

$NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l)$ $NaHCO_3(aq) + HNO_3(aq) \rightarrow No \ reaction \ occurs$ 2) With methyl orange indicator $NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l)$ $NaHCO_3(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l) + CO_2(g)$ e)Determine the volume of nitric acid in FA1 required for the complete neutralisation of: i) sodium hydroxide. ii) sodium hydrogencarbonate f)Calculate the concentration of sodium hydroxide in FA2 in gdm⁻³. g)Determine the: i) concentration of sodium hydrogenearbonate in FA2 in gdm⁻³.

A Simplifi	ied Approach to A	'Level Chemistry	Practicals	
ii) percentage of sodium hyo	drogencarbonate in	ı FA2.		
Experiment 3.3.4.3 You are provided with the following HA1 which is 0.1M sulphuric acids HA2 which is a mixture of sodiur and the required to determine the (Na=23, C=12, O=16, H=1) Procedure I Pipette 25or 20cm ³ of HA2 into a titrate with HA1 from the burette consistent results. Record your results.	d m carbonate and so the percentage of so the clean conical flash until the end point	k. Add 2-3 drops of is reached. Repea	n HA2. of phenolphthalei	
Volume of p	pipette used		c	m^3
Table I (With phenolphthalein	indicator)			
Final burette reading (cm ³)				
Initial burette reading(cm ³)				
Volume of HA1(cm ³)				
Average volume of HA1 used for	table I			cm ³
Procedure II Pipette 25or 20cm³ of HA2 into a	clean conical flas	k. Add 2-3 drops o	of methyl orange	indicator and

Pr

Pi titrate with HA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results.Record your results in Table II below.

Volume of p	oipette used		cm ³
Table II (With methyl orange in	ndicator)		
Final burette reading (cm ³)			
Initial burette reading(cm ³)			
Volume of HA1(cm ³)			
Average volume of HA1 used for	r table II		2
Note: 1) With phenolphthalein i $2Na_2CO_3(aq) + H_2SO_4(aq)$ $NaHCO_3(aq) + H_2SO_4(aq) -$ 2) With methyl orange ind $Na_2CO_3(aq) + H_2SO_4(aq) -$ $2NaHCO_3(aq) + H_2SO_4(aq)$ a)Determine the volume of sulph i) sodium carbonate	$ → 2NaHCO_3(aq) → No reaction icator → Na2SO4(aq) + H2 → Na2SO4(aq) uric acid in HA1 i$	$O + Na_2SO_4(aq)$ $O(l) + CO_2(g)$ $O(l) + 2H_2O(l) + 2CO_2(g)$ required for the com-	
ii) sodium hydrogencarbonate			
b)Calculate the concentration of	sodium carbonate	in HA2 in gdm ⁻³ .	

A Simplified Approach to A' Level Chemistry Practicals c) Determine the concentration of sodium hydrogenearbonate in HA2 in gdm⁻³. d) Calculate the percentage of sodium carbonate in HA2. **Experiment 3.3.4.4** You are provided with the following: **FA1** which is a mixture of sodium hydroxide and sodium carbonate FA2 which is a solution of 0.1Mhydrochloric acid You are required to determine the percentage of sodium hydroxide in the FA1 mixture. (Na=23, C=12, O=16, H=1) Procedure I i) By use of a measuring cylinder, measure and transfer 100cm³ of FA1 into a 250cm³volumetric flask and make up to the mark with distilled water. Label the resultant solution FA3. ii) Pipette 25 or 20cm³ of FA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below. Table I (With phenolphthalein indicator) Final burette reading (cm³) Initial burette reading(cm³) Volume of FA2(cm³)

Average volume of FA2 used for table I

Procedure II

Pipette 25 or20cm ³ of FA3 into a cleatitrate with FA2 from the burette unticonsistent results. Record your result	il the end point is	reached. Repeat the	
Volume of p	oipette used		cm ³
Table II (With methyl orange	indicator)		
Final burette reading (cm ³)			
Initial burette reading(cm ³)			
Volume of FA2(cm ³)			
a) Determine the volume of hydroch i) sodium carbonate	nloric acid in FA2	_	
b) Calculate the concentration of: i) sodium carbonate in FA1 in gr	rams per litre.		cm ³

ii) sodium hydroxide in FA1 in grams per litre.	
	• • • • •
	• • • • •
Determine the percentage of sodium hydroxide in the FA1 mixture.	
periment 3.3.4.5	
u are provided with the following: 1 which is a mixture of sodium carbonate and sodium hydrogencarbonate	
2 which is a solution of 0.1M nitric acid	
u are required to determine the percentage of sodium carbonate in FA1. a=23, C=12, O=16, H=1)	

Procedure I

- i) By use of a measuring cylinder, measure and transfer 120cm³ of FA1 into a clean beaker. Add 80cm³ of distilled water and label the resultant solution FA3.
- ii) Pipette 25 or 20cm³ of FA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below.

A Simplifie	d Approach to A' Le	vel Chemistry Prac	eticals
Volume o	f pipette used		cm ³
Table I (With Phenolphthale	ein indicator)		
Final burette reading (cm ³)			
Initial burette reading(cm ³)			
Volume of FA2(cm ³)			
verage volume of FA2 used for to	able I		
pette 25 or20cm ³ of FA3 into a crate with FA2 from the burette unsistent results.Record your resu	ntil the end point is r		
Volume of	pipette used		cm ³
Table II (With methyl orang	e indicator)		
Final burette reading (cm ³)			
Initial burette reading(cm ³)			
Volume of FA2(cm ³)			
verage volume of FA2 used for to			om ³
Determine the volume of nitric a i) sodium carbonate			
ii) sodium hydrogecarbonate			
Calculate the concentration of: i) sodium carbonate in FA1 in	grams per litre.		

		A Simplifie	a Approaci	n to A' Lev	ei Cnemisi	ry Practical	<u>is</u>	
•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
				• • • • • • • • • • • • • • • • • • • •				
ii) sod	lium hydrog	encarbonate	in FA1 in g	grams per l	itre.			
•••••								
•••••								
) Determi	ne the perce	ntage of sod	ium carbor	nate in the I	FA1 mixtur	e.		
	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••

	•	4.3	•	1 /
Hxn	erime	nf 3	1	.4.6
	CI IIIIC		•••	• • • •

You are provided with the following:

FA1 which is 0.1M sulphuric acid

FA2which is a mixture of sodium hydroxide and sodium hydrogencarbonate

You are required to determine the percentage of sodium hydroxide in FA2.

(Na=23, C=12, O=16, H=1)

Procedure

- i) By use of a measuring cylinder, measure and transfer 100cm³ of FA2 into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the resultant solution FA3.
- ii) Pipette 25cm³ of FA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate

Volume of pip	ette used	cm ³
Table I (With phenolphthalei	n indicator)	
inal burette reading (cm ³)		
itial burette reading(cm ³)		
olume of FA1(cm ³)		
Table II (With methyl orange inal burette reading (cm ³)	inaicator)	
` ;		
carone reading (em)		
itial burette reading(cm³)		
, ,		

	ii) sodium hydrogencarbonate
b)	Calculate the concentration of sodium hydroxide in FA2 in gdm ⁻³ .
••••	
c) l	Determine the: i) concentration of sodium hydrogencarbonate in FA2 in gdm ⁻³ .
	ii) percentage of sodium hydrogencarbonate in FA2.

CHAPTER FOUR 4.0REDOX TITRATIONS

4.1Introduction

Redox titrations are based on redox reactions. Redox reactions are reactions in which both reduction and oxidation occur simultaneously.

Oxidation can be defined in three different ways as either:

- The addition of oxygen to a substance OR
- The removal of electrons from a substance OR
- The removal of hydrogen from a substance.

Reduction can be defined in three different ways as either:

- The removal of oxygen from a substance OR
- The addition of electrons to a substance OR
- The addition of hydrogen to a substance.

In redox titrations, however, we shall look at oxidation and reduction in terms of transfer of electrons. The substance that loses or gains electrons may be an element, compound or ion.

4.1.1 Terms commonly used in Redox Reactions

a) Oxidation number

The Oxidation number of an atomis the real or hypothetical charge that the atom bearsin its pure state or in its compound basing on specific rules.

When the oxidation number of a substance increases, the substance is said to be oxidized and when the oxidation number of a substance decreases, the substance is said to be reduced.

b) Oxidizing agent

An oxidizing agent is a substance which removes electrons from other substances. In the process of removing electrons from other substances, the oxidizing agent gains those electrons and as a result, its oxidation number decreases. Therefore, an oxidizing agent is always reduced at the end of a redox reaction.

c) Reducing agent

A reducing agent is a substance which donates electrons to other substances. In the process of donating the electrons, it loses them, and the loss of the negative charges (in form of electrons), results in increase of the positive charge, which corresponds to an increase in the oxidation number. Therefore, a reducing agent is always oxidized at the end of a redox reaction.

d) Half equations

Half equations are separate equations that specify which substances gain or lose electrons in a redox reaction. Zinc powder, when added to a blue solution of copper(II) sulphate, and the mixture warmed gently, it reduces the copper(II) ions in the blue solution to copper metal which appears as a brown solid and itself oxidized to zinc ions which appear as a colourless solution. Equations (1) and (2) below are half equations.

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e$$
- (1)
 $Cu^{2+}(aq) + 2e$ - $\rightarrow Cu(s)$ (2)

e) OverallRedox Equation

An overall redox equation is an equation that is obtained after combining two half equations where by one half equation represents an oxidation process and the other represents a reduction process. When the two half equations are combined, the two electrons on each side cansel to give equation (3) below which is the overall redox equation for the two half equations above.

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
(3)

4.1.2Commonoxidizing agents

The most commonly used oxidizing agents include the following chemical species:

- Acidified manganate(VII) ions,MnO₄-/ H⁺
- Acidified dichromate(VI) ions, Cr₂O₇²⁻/ H⁺
- Acidified chromate(VI) ions, CrO_4^2/H^+
- Acidified chlorate ions, ClO₃-/ H⁺
- Acidified oxochlorate ions,ClO⁻/ H⁺
- Acidified iodate ions, IO₃-/ H⁺
- Persulphate ions, $S_2O_8^{2}$

- Acidified manganese(IV) oxide, MnO₂/H⁺
- Concentratednitric acid, HNO₃
- Concentrated sulphuric acid, H₂SO₄
- Acidified manganate(VI) ions, MnO₄²⁻/ H⁺
- Acidified hydrogen peroxide, H₂O₂/ H⁺
- Oxygen,O₂, e.t.c.

4.1.3 Half equations of common oxidizing agents

$$\begin{array}{l} Cu^{2+}(aq) + 2e^- \to Cu(s) \\ Fe^{2+}(aq) + 2e^- \to Fe(s) \\ Ag^+(aq) + e^- \to Ag(s) \\ I_2(aq) + 2e^- \to 2\Gamma(aq) \\ Cl_2(aq) + 2e^- \to 2Br^-(aq) \\ MnO_4^-(aq) + 8H^+(aq) + 5e^- \to Mn^{2+}(aq) + 4H_2O(l) \\ Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \to Cr^{3+}(aq) + 7H_2O(l) \\ ClO_3^-(aq) + 6H^+(aq) + 4e^- \to C\Gamma(aq) + 3H_2O(l) \\ ClO^-(aq) + 2H^+(aq) + 2e^- \to C\Gamma(aq) + H_2O(l) \\ IO_3^-(aq) + 6H^+(aq) + 6e^- \to \Gamma(aq) + 3H_2O(l) \\ \{when acidified with concentrated acid} \\ 2IO_3^-(aq) + 12H^+(aq) + 10e^- \to I_2(aq) + 6H_2O(l) \\ \{when acidified with diluteacid} \\ H_2O_2(aq) + 2H^+(aq) + 2e^- \to 2H_2O(l) \\ MnO_2(aq) + 4H^+(aq) + 3e^- \to Mn^{2+}(aq) + 2H_2O(l) \\ 2O_2(g) + 4e^- \to 2O_2^{2-}(aq) \\ CrO_4^{2-}(aq) + 8H^+(aq) + 3e^- \to Cr^{3+}(aq) + 4H_2O(l) \\ S_2O_8^{2-}(aq) + 2e^- \to 2SO_4^{2-}(aq) \end{array}$$

4.1.4Common Reducing Agents

The most commonly used reducing agents include the following Chemical species:

- Magnesium metal, Mg
- Zinc metal, Zn
- Iron(II) ions, Fe²⁺
- Oxalate ions, C₂O₄²-
- Thiosulphate ions, S₂O₃²-
- Sulphite ions, SO_3^2
- Nitrite ions, NO₂

- Iodide ions, I
- Chloride ions, Cl
- Tin(II) ion, Sn²⁺
- Hydrogen peroxide, H₂O₂
- Hydrogen, H₂
- Carbon, C
- Amino group, -NH₂, e.t.c.

4.1.5 Half equations of common Reducing Agents

Mg(s) → Mg²⁺(aq) + 2e⁻
Zn(s) → Zn²⁺(aq) + 2e⁻
Fe²⁺(aq) → Fe³⁺(aq) + e⁻

$$C_2O_4^{2-}(aq) \rightarrow 2CO_2(g) + 2e^{-}$$

 $2S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + 2e^{-}$
 $SO_3^{2-}(aq) + H_2O(1) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^{-}$
 $NO_2^{-}(aq) + H_2O(1) \rightarrow NO_3^{-}(aq) + 2H^+(aq) + 2e^{-}$
 $H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^{-}$
 $2\Gamma(aq) \rightarrow I_2(aq) + 2e^{-}$
 $Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-}$
 $2C(s) + O_2^{2-}(aq) \rightarrow 2CO(g) + 2e^{-}$

4.2 Major categories of Redox Reactions

4.2.1 Redox reactions involving acidified potassium manganate(VII) solution

In acidic medium, the manganese is reduced from the oxidation state of +7 in the manganate(VII) ion, MnO_4 which appears as a purple solution, to the oxidation state of +2 in form of manganese(II) ions, Mn^{2+} which are very faint pink in solution hence appear as a colourless solution.

$$MnO_4(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$$

The manganate(VII) ion, MnO₄ is acidified using only sulphuric acid and not hydrochloric acid. This is because MnO₄ is a very strong oxidizing agent and oxidizes the chloride ions, Cl⁻ in the hydrochloric acid solution to chlorine gas. The half equations for this redox reaction are shown below.

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$$
......(i)
 $2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-$(ii)

To come up with the overall redox equation, we aim at ensuring that the number of electrons on the left side is equal to the number of electrons on the right side. This is done by multiplying equation (i) by 2 and multiplying equation (ii) by 5 such that the number of electrons on the left and on the right is 10. Equation (i) now becomes:

$$2\text{MnO}_4(aq) + 16\text{H}^+(aq) + 10e^- \rightarrow 2\text{Mn}^{2+}(aq) + 8\text{H}_2\text{O}(1)$$
....(iii)

Equation (ii) now becomes:

$$10Cl^{-}(aq) \rightarrow 5Cl_{2}(g) + 10e^{-}$$
 (iv)

When the number of electrons are 10 on both the left and right, they counsel and the overall redox equation becomes:

$$2MnO_4(aq) + 16H(aq) + 10Cl(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5Cl_2(g)$$

Nitric acid is also not used to acidify MnO_4^- because the nitric acid itself is an oxidizing agent which would compete with the MnO_4^- .

Note: Acidified potassium manganate(VII) is commonly used in volumetric analysis because of the following reasons:

- 1) It is the most powerful oxidising agent and is stable in water.
- 2) It is a self indicator (no indicator is required since at the end point, the purple solution turns faint pink).

Potassium manganate(VII)can be used in redox titrations in the oxidation of reducing agents such as:

a) Iron(II) salts
Half equations
$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$ (i)
$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$ (i) $MnO_4(aq) + 8H^+(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O(1)$ (ii)
Multiplying equation (i) by 5, equation (i) becomes:
$5Fe^{2+}(aq) \rightarrow 5Fe^{3+}(aq) + 5e^{-}$ (iii)
Combining a greation (ii) and (iii) gives us the assemble adam a greation below:
Combining equation (ii) and (iii) gives us the overall redox equation below: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(1) + 5Fe^{3+}(aq)$
b) Oxalate ions
Half equations
$C_2O_4^{2-}(aq) \rightarrow 2CO_2(g) + 2e^{-}$ (i)
$MnO_4(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$ (ii)
Multiplying equation (i) by 5, equation (i) becomes:
$5C_2O_4^{2-}(aq) \rightarrow 10CO_2(g) + 10e^{-}$ (iii)
Multiplying equation (ii) by 2, equation (ii) becomes:
2MnO_4 (aq) + 16H^+ (aq) + $10\text{e}^- \rightarrow 2\text{Mn}^{2+}$ (aq) + $8\text{H}_2\text{O}(1)$ (iv)
Combining equation (iii) and (iv) gives us the overall redox equation below:
$5C_2O_4^{2-}(aq) + 2MnO_4^{-}(aq) + 16H^{+}(aq) \rightarrow 10CO_2(g) + 2Mn^{2+}(aq) + 8H_2O(l)$
c) Sulphite ions
Half equations
$SO_3^{2-}(aq) + H_2O(1) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$ (i)
$MnO_4(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$ (ii)
Multiplying equation (i) by 5, equation (i) becomes:
$5SO_3^{2-}(aq) + 5H_2O(1) \rightarrow 5SO_4^{2-}(aq) + 10H^+(aq) + 10e^-$ (iii)
Multiplying equation (ii) by 2, equation (ii) becomes:
2MnO_4 (aq) +16H ⁺ (aq) + 10e ⁻ 2Mn ²⁺ (aq) + 8H ₂ O(l)(iv)
Combining equation (iii) and (iv) gives us the overall redox equation below:
$5SO_3^{2-}(aq) + 2MnO_4(aq) + 6H^+(aq) \rightarrow 5SO_4^{2-}(aq) + 2Mn^{2+}(aq) + 3H_2O(1)$
d) Nitrite ions
Half equations
$NO_2(aq) + H_2O(1) \rightarrow NO_3(aq) + 2H(aq) + 2e^{-}$ (i)
$MnO_4(aq) + 8H^+(aq) + 5e \rightarrow Mn^{2+}(aq) + 4H_2O(1)$ (ii)
Multiplying equation (i) by 5, equation (i) becomes:
$5NO_2(qq) + 5H_2O(1) \rightarrow 5NO_3(qq) + 10H(qq) + 10e$ (iii)
Multiplying equation (ii) by 2, equation (ii) becomes:
$2\text{MnO}_4^{-}(\text{aq}) + 16\text{H}^{+}(\text{aq}) + 10\text{e}^{-} \rightarrow 2\text{Mn}^{2+}(\text{aq}) + 8\text{H}_2\text{O}(1)$ (iv)
Combining equation (iii) and (iv) gives us the overall redox equation below:
$5NO_2(aq) + 2MnO_4(aq) + 6H(aq) \rightarrow 5NO_3(aq) + 2Mn^{2+}(aq) + 3H_2O(1)$
e) Hydrogen peroxide
Half equations
$H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^-$ (i) $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$ (ii)
$MnO_4(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1)$ (ii)

Apart from acting as a reducing agent where it is oxidized to oxygen, hydrogen peroxide can also act as an oxidizing agent where it is reduced to water as shown in **section 4.1.3** above.

Volume strength of hydrogen peroxide

Hydrogen peroxide is obtainable from suppliers in form of an aqueous solution whose concentration is expressed as 6%, 12% or very commonly 30% hydrogen peroxide in which cases it is simply referred to as "20 volume", "40 volume" or "100 volume" hydrogen peroxide respectively. In other words, many times, the concentration of hydrogen peroxide is looked at in terms of how much volume (usually in cm³) of oxygen gas is evolved by a fixed amount or mass of hydrogen peroxide but usually by 1cm³ of hydrogen peroxide solution at standard temperature and pressure (s.t.p). This unit of concentration of hydrogen peroxide is referred to as volume strength.

The volume strength of hydrogen peroxide is the volume of oxygen available from a unit volume of hydrogen peroxide solution measured at s.t.p.

A volume solution of hydrogen peroxide, therefore, yields one volume of oxygen for each volume of the hydrogen peroxide solution decomposed at standard temperature and prerssure (s.t.p.).

For example:

- i) 1cm³ of "100 volume" hydrogen peroxide decomposes to yield 100cm³ of oxygen gas measured at s.t.p.
- ii) 1cm³ of "30 volume" hydrogen peroxide decomposes to yield 30cm³ of oxygen gas measured at s.t.p.
- iii) 1cm³ of "20 volume hydrogen peroxide decomposes to yield 20cm³ of oxygen gas measured at s.t.p.

Hydrogen peroxide decomposes according to the following equation:

 $2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(1)$

Moles of hydrogen peroxide decomposing = 2

Mass of hydrogen peroxide decomposing = [(1x4) + (16x4)]g = 68g

Moles of oxygen evolved at s.t.p = 1

Volume of oxygen evolved at s.t.p. = 22.4dm³ (i.e. 22400cm³)

It follows that:

- i) 2moles of hydrogen peroxide produce 1 mole of oxygen (22.4dm³ i.e. 22400cm³ of oxygen at s.t.p.). Thus 2 moles of hydrogen peroxide have a volume strength of 22.4dm³ (22400cm³) at s.t.p.
- ii) Also 68g of hydrogen peroxide produce 1 mole of oxygen (22.4dm³ i.e. 22400cm³ of oxygen at s.t.p.). Thus a "22400 volume" solution of hydrogen peroxide contains 68g of hydrogen peroxide.

Note: Since we usually carry out experiments in the chemistry laboratory at **room temperature**, then in such situations, we carry out our calculations for determination of volume strength of hydrogen peroxide solutions basing on the fact that: 2 moles of hydrogen peroxide decompose to yield 24dm³ (i.e. 24000cm³) of oxygen gas at room temperature rather than 22.4 dm³ (22400cm³) at s.t.p.

4.2.2Redox reactions involving acidified potassium dichromate(VI) solution

In acidic medium, the chromium is reduced from the oxidation state of +6 in the dichromate(VI) ion, $Cr_2O_7^{2-}$ which appears orange in solution, to the oxidation state of +3 in form of chromium(III) ions, Cr^{3+} which appear green in solution.

$$Cr_2O_7^{2}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

Potassium dichromate(VI), when pure can remain stable in aqueous state for a long period of time and can be used as a primary standard.

Potassium dichromate(VI) can be used in redox titrations in the oxidation of reducing agents such as:

a) Iron(II) salts Half equations $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$ (i) $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^{-} \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$ (ii) Multiplying equation (i) by 6, equation (i) becomes: $6Fe^{2+}(aq) \rightarrow 6Fe^{3+}(aq) + 6e^{-}$ (iii) Combining equation (ii) and (iii) gives us the **overall redox equation** below: $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1) + 6Fe^{3+}(aq)$ b) Sulphite ions Half equations $SO_3^{2-}(aq) + H_2O(1) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$ (i) $Cr_2O_7^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$(ii) Multiplying equation (i) by 3, equation (i) becomes: $3SO_3^{2}(aq) + 3H_2O(1) \rightarrow 3SO_4^{2}(aq) + 6H^+(aq) + 6e^-$ (iii) Combining equation (ii) and (iii) gives us the overall redox equation below: $Cr_2O_7^{2-}(aq) + 8H^{+}(aq) + 3SO_3^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 4H_2O(1) + 3SO_4^{2-}(aq)$ c)Oxalate ions Half equations $C_2O_4^2$ (aq) $\to 2CO_2(g) + 2e^-$ (i) $Cr_2O_7^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$(ii) Multiplying equation (i) by 3, equation (i) becomes: $3C_2O_4^{2}(aq) \rightarrow 6CO_2(g) + 6e^{-1}$ (iii) Combining equation (ii) and (iii) gives us the **overall redox equation** below: $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3C_2O_4^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1) + 6CO_2(q)$ d)Iodide ions Half equations $2\bar{I}(aq) \rightarrow I_2(aq) + 2e^-$ (i) $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$ (ii) Multiplying equation (i) by 3, equation (i) becomes: $6I^{-}(aq) \rightarrow 3I_{2}(aq) + 6e^{-}$ (iii)

Combining equation (ii) and (iii) gives us the **overall redox equation** below:

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6I^-(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1) + 3I_2(aq)$$

4.3 Titrations involving acidified potassium manganate(VII)solution

4.3.1 Worked out examples on titrations involving acidified potassium manganate(VII) solution

Worked out example 4.3.1.1

You are provided with the following:

FA1 which is potassium manganate(VII) solution.

FA2which was prepared by dissolving 6.8g of impure sodium sulphite in one litre of solution.

FA3 which is 2M sulphuric acid.

Solid B which are crystals of iron(II) sulphate, FeSO₄.7H₂O

You are required to determine the percentage purity of the sodium sulphite in FA2.

PROCEDURE A

Weigh accurately 3.8g of B into a clean beaker. Add 100cm³ of FA3 and stir well to dissolve. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA4.

Pipette 20 or 25cm³ of FA4 into a clean conical flask and titrate with FA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below

Mass of beaker + B	45.0	σ
Mass of beaker		
Mass of B		
Capacity of pipette used	25.0.	cm ³

Final burette reading (cm ³)	17.30	17.10	23.00
Initial burette reading (cm ³)	0.00	0.00	6.00
volume of FA1 (cm ³)	17.30	17.10	17.00

Questions

a) Write the equation of reaction that occurs between Fe²⁺ and MnO₄.

$$MnO_4^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l) + 5Fe^{3+}(aq)$$

b) Calculate the number of moles of Fe^{2+} in FA4 that reacted with MnO_4^- in FA1. (Fe=56, S=32,O=16, H=1)

Molar mass of FeSO₄.7H₂O =
$$[(56x1) + (32x1) + (16x4) + (7x18)] = 278g$$

278g of FeSO₄.7H₂O contain 1 mole
3.8g of FeSO₄.7H₂O contain $(\frac{1}{278} \times 3.8)$ moles

$$= 0.0137 \text{ moles}$$

$$250cm^{3} \text{ of } FA4 \text{ contain } 0.0137 \text{ moles of } Fe^{2+}$$

$$25cm^{3} \text{ of } FA4 \text{ contain} \left(\frac{0.0137}{250} \times 25\right) \text{ moles of } Fe^{2+}$$

$$= 0.00137 \text{ moles of } Fe^{2+}$$
c) Determine the MnO_{4} in FA1 in moldm⁻³

$$Moles \text{ of } MnO_{4} = \frac{1}{5} x \text{ moles of } Fe^{2+}$$

$$= \left(\frac{1}{5} \times 0.00137\right)$$

$$= 0.000273$$

$$17.05cm^{3} \text{ of } FA1 \text{ contain } 0.000273 \text{ moles of } MnO_{4}$$

$$1000 \text{ cm}^{3} \text{ of } FA1 \text{ contain } \left(\frac{0.000273}{17.05} \times 1000\right) \text{ moles of } MnO_{4}$$

$$Concentration \text{ of } MnO_{4} = 0.016 \text{ moldm}^{-3}$$

PROCEDURE B

Using a measuring cylinder, measure accurately 25cm³ of FA2 into a clean conical flask. Add 10cm³ of FA3 and titrate the mixture with FA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Final burette reading (cm ³)	25.30	25.10	29.10
Initial burette reading (cm ³)	0.00	0.00	4.00
volume of FA1 (cm ³)	25.30	25.10	25.10

Values used to calculate average.
$$25.10, 25.10$$
. cm³
Average volume of FA1 used $\left(\frac{25.10 + 25.10}{2}\right) = 25.10$.

Questions

c) Calculate the moles of SO₃²⁻ in FA2 that reacted with MnO₄ in FA1.

 $1000cm^3$ of FA1 contain 0.016 moles of MnO_4

25.10cm³ of FA1 contain
$$\left(\frac{0.016}{1000} \times 25.10\right)$$
 moles of MnO_4^-
=0.0004 moles of MnO_4^-
2 MnO_4^- (aq) + 6 H^+ (aq) + 5 $SO_3^{2^-}$ (aq) $\rightarrow 2Mn^{2^+}$ (aq) +3 $H_2O(l)$ + 5 $SO_4^{2^-}$ (aq)
2moles of MnO_4 react with 5moles of $SO_3^{2^-}$
0.0004 moles of MnO_4 react with $\left(\frac{5}{2} \times 0.0004\right)$ moles of $SO_3^{2^-}$
= 0.001 moles of $SO_3^{2^-}$

d) Determine the:

i) concentration of
$$SO_3^{2-}$$
 in FA2 in moldm⁻³.
 $25cm^3$ of FA2 contain 0.001 moles of SO_3^{2-}
 $1000cm^3$ of FA2 contain $\left(\frac{0.001}{25} \times 1000\right)$ moles of SO_3^{2-}
 $=0.04 \text{ moldm}^{-3}$

ii) Percentage purity of the sodium sulphite sample used in the preparation of FA2.

(Na=23, S=32, O=16)
Molar mass of
$$Na_2SO_3 = [(23x2)+(32x1)+(16x3)]g$$

 $=(46+32+48)g$
 $=126g$
1 mole of Na_2SO_3 weighs 126g
0.04 moles of Na_2SO_3 weigh (126 x 0.04)g
 $=5.04$ gdm⁻³
Percentage purity of the sodium sulphite sample = $\left(\frac{5.04}{6.8} \times 100\right)\%$
 $=74.12\%$

Worked out example 4.3.1.2

You are provided with the following:

FA1 which contains 1.35g of potassium manganate(VII) in 500cm³ of solution.

FA2 which is hydrogen peroxide solution

FA3 which is 2.0 M sulphuric acid

You are required to determine the volume strength of the hydrogen peroxide solution provided.

Theory

Hydrogen peroxide undergoes oxidation as shown by the equation below.

$$H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^-$$

Procedure

Using a measuring cylinder, measure and transfer 25cm³ of FA2 into a 250cm³ volumetric flask. Add about 50cm³ of distilled water and shake well to mix and then make up to the mark by adding more distilled water. Label the solution FA4.

Pipette 20 or 25cm³ of FA4 into a clean conical flask. Add an equal volume of FA3 using a measuring cylinder and titrate with FA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Capacity of pipette used 25.0 cm³

Final burette reading (cm ³)	29.40	39.60	29.40
Initial burette reading (cm ³)	0.00	10.00	0.00
e of FA1 used(cm ³)	29.40	29.60	29.40

Values used to calculate average 29.40, 29.40 Cm

Average volume of FA1 used $\left(\frac{29.40 + 29.40}{2}\right) = 29.40$ cm³

a) Write the equation of reaction between hydrogen peroxide and acidified manganate(VII) ions.

$$2MnO_4-(aq) + 6H^+(aq) + 5H_2O_2(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5O_2(g)$$

b) Determine the molar concentration of potassium manganate(VII) in FA1.

Molar mass of
$$KMnO_4 = (39x1) + (55x1) + (16x4) = 158g$$

158g of KMnO₄ contain 1 mole.

1.35g of KMnO₄ contain
$$\left(\frac{1}{158} \times 1.35\right)$$
 moles

= 0.008544 moles

500cm3 of FA1 contain 0.008544 moles of potassium manganate(VII)

 $1000cm^3$ of FA1 contain $\left(\frac{0.008544}{500} \times 1000\right)$ moles of potassium manganate(VII)

 $= 0.017 mol dm^{-3}$

- c) Calculate the:
- i) number of moles of hydrogen peroxide in 250cm³ of FA4.

1000cm³ of FA1 contain 0.017moles of potassium manganate(VII)

29.40cm³ of FA1 contain $\left(\frac{0.017}{1000} \times 29.40\right)$ motes of potassium manganate(VII)

= 0.0004998 moles of potassium manganate(VII) $= 0.0004998 \text{ moles of hydrogen peroxide} = \frac{5}{2} \times 0.0004998 \text{ moles}$ = 0.00125 moles

25cm³ of FA4 contain 0.00125 moles of hydrogen peroxide.

250cm³ of FA4 contain $\left(\frac{0.0125}{25} \times 250\right)$ moles of hydrogen peroxide = 0.0125 moles of hydrogen peroxide

ii) molar concentration of hydrogen peroxide in the FA2 solution.

25cm³ of FA2 contain 0.0125moles of hydrogen peroxide

$$1000cm^3$$
 of FA2 contain $\left(\frac{0.0125}{25} \times 1000\right)$ modes of hydrogen peroxide

 $= 0.5 \text{mol dm}^{-3}$

iii) volume strength of hydrogen peroxide in the original FA2 solution.

(NB:Volume strength is the volume of oxygen gas liberated by 1cm³ of hydrogen peroxide solution; I mole of a gas occupies 24dm³ at room temperature).

$$1000cm^3$$
 of FA2 contain 0.5 moles of H_2O_2

$$1000cm^3$$
 of FA2 contain 0.5 moles of H_2O_2
 $1cm^3$ of FA2 contains $\left(\frac{0.5}{1000}\right)$ moles of H_2O_2
 $= 0.0005$ moles of H_2O_2

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

2moles of hydrogen peroxide evolve 1 mole of oxygen gas

0.0005 moles of hydrogen peroxide evolve $\left(\frac{1}{2} \times 0.0005\right)$ moles of oxygen gas

=0.00025moles of oxygen gas

1 mole of oxygen gas occupies 24dm³ at room temperature

0.00025 moles of oxygen gas occupy (24x0.00025) Am at room temperature

Volume strength of hydrogen peroxide in $FA2 = 0.006 \text{ dm}^3$

Worked out example 4.3.1.3

You are provided with the following:

FA1 which is a solution that contains 4.66g of anhydrous sodium sulphite, Na₂SO₃ per ltre.

FA2 which is potassium manganate(VII) solution.

2.0M sulphuric acid solution.

Solid D which is impure ferrous oxalate, FeC₂O₄.

You are required to determine the:

- (i) molar concentration of the potassium mangante(VII) in FA2.
- (ii) percentage purity of the ferrousoxalate sample.

Theory

Acidified manganate(VII) ions react with sulphite ions, iron(II) ions and oxalate ions according to the following equations.

$$2MnO_4^{-}(aq) + 6H^{+}(aq) + 5SO_3^{2-}(aq) \rightarrow 5SO_4^{2-}(aq) + 2Mn^{2+}(aq) + 3H_2O(l)$$

$$MnO_4^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l) + 5Fe^{3+}(aq)$$

$$2MnO_4^{-}(aq) + 16H^{+}(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

Procedure I

Using a measuring cylinder, transfer 25cm³ of FA1 into a conical flask. Add 10cm³ of 2.0M sulphuric acid and titrate the solution with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I

Final burette reading (cm ³)	18.60	20.50	20.50
Initial burette reading (cm ³)	0.00	2.00	2.00
Volume of FA2 used(cm ³)	18.60	18.50	18.50

Titre values used to calculate verage $\frac{18.50, 18.50}{2} = 18.50$ Average volume of FA2 used $\left(\frac{18.50 + 18.50}{2}\right) = 18.50$

Procedure II

Weigh accurately 1.4g of D into a clean beaker. Add 100cm³ of 2.0M sulphuric acid and stir well to dissolve. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 25cm³ (or 20cm³) of FA3 into a conical flask and heat the solution to 70^oC. Titrate the hot solution with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table II below.

Mass of beaker + D	39.6.	g
Mass of beaker		
Mass of D		
Capacity of pipette used		

Table II

1 11010 11			
Final burette reading (cm ³)	22.90	27.10	22.90
Initial burette reading (cm ³)	0.00	4.00	0.00
Volume of FA2 used(cm ³)	22.90	23.10	22.90

Average volume of FA2 used $\left(\frac{22.90 + 22.90}{2}\right) = 22.90$.

- (a) Calculate the:
- (i) molarity of potassium manganate(VII) in FA2. (Na=39, S=32, O=16)

Molar mass of
$$Na_2SO_3 = [(23x2) + (32x1) + (16x3)] = 126g$$

126g of Na₂SO₃ contain 1 mole

4.66g of Na₂SO₃contains
$$\left(\frac{4.66}{126} \times 4.66\right)$$
 moles

$$\begin{array}{r}
-0.037M \\
1000cm^{3} of FA1 contain 0.037 moles of SO_{3}^{2-} \\
25.0cm^{3} of FA1 contain \left(\frac{0.037}{1000} \times 25.0\right) \text{ moles of } SO_{3}^{2-} \\
= 9.25 \times 10^{-4} \text{ moles of } SO_{3}^{2-}
\end{array}$$

Moles of
$$MnO_4^- = \left(\frac{2}{5}\right) x$$
 moles of SO_3^{2-}
 $= \left(\frac{2}{5} \times 9.25 \times 10^{-4}\right) = 3.7 \times 10^{-4}$ moles

$$=(\frac{2}{5} \times 9.25 \times 10^{-4}) = 3.7 \times 10^{-4}$$
 moles

18.50cm³ of FA2 contain $3.7x10^{-4}$ moles of MnO₄

1000cm³ of FA2 contain
$$\left(\frac{3.7x10-4}{18.50} \times 1000\right)$$
 moles of MnO₄⁻
= **0.02M**

(ii) moles of manganate(VII) ions that reacted with 25cm³ (or 20cm³) of FA3.

(1) moles of manganate (VII) ions that reacted with 25cm (1)
$$1000 \text{cm}^3$$
 of FA2 contain 0.02 moles of MnO₄ = 22.90cm^3 of FA2 contain $\left(\frac{0.02}{1000} \times 22.90\right)$ moles of MnO₄ = 4.58×10^{-4} moles of MnO₄ =

(iii) moles of iron(II) ions in 25cm³ (or 20cm³) of FA3.

Combining the two equations of reaction between MnO_4 and both Fe^{2+} and $C_2O_4^{2-}$, we have:

$$3MnO_4^{-}(aq) + 24H^{+}(aq) + 5Fe^{2+}(aq) + 5C_2O_4^{2-}(aq) \rightarrow 3Mn^{2+}(aq) + 12H_2O(l) + 5Fe^{3+}(aq) + 10CO_2(g)$$

Moles of
$$Fe^{2+} = \frac{5}{3}x$$
 moles of MnO_4^-
= $\left(\frac{5}{3} \times 4.58x10 - 4\right) = 7.63x10^{-4}$ moles of Fe^{2+}

(b) Determine the:

(i) mass of ferrous oxalate, FeC_2O_4 in 250cm³ of FA3. (Fe = 56, C=12, O=16) 25cm³ of FA3 contain 7.63x 10^{-4} moles of FeC₂Q₄

$$250cm^{3} of FA3 contain \left(\frac{7.63x10^{-4}}{25} \times 250\right) \text{ moles of } FeC_{2}O_{4}$$

$$= 7.63x10^{-3} \text{ moles of } FeC_{2}O_{4}$$

$$Molar \text{ mass of } FeC_{2}O_{4} = (56x1) + (12x2) + (16x4) = 144g$$

1mole of FeC₂O₄ weighs 144g

Thole of
$$FeC_2O_4$$
 weighs 144g
7.63x10⁻³ moles of FeC_2O_4 weighs (144 x 7.63x10⁻³)
= 1.099g

(ii) percentage purity of the ferrous oxalate sample.

Percentage purity =
$$\left(\frac{\text{Mass of the ferrous oxalate}}{\text{Total mass of impure sample}} \times 100\right)\%$$

$$= \left(\frac{1.099}{1.4} \times 100\right)\% = 78.5\%$$

Worked out example 4.3.1.4

You are provided with the following:

HA1 which contains 2.8g of sodium hydroxide per litre.

HA2 which is 0.02Mpotassium manganate(VII).

HA4 is 1.5M sulphuric acid.

Solid J which is an acidic compound of the formula $H_a(C_2O_4)_h$ c H_2O .

You are required to determine the value of a, b and c in $H_a(C_2O_4)_b$.c H_2O .

Theory

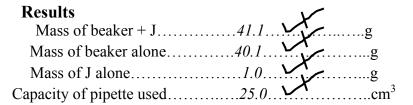
Solid E dissolves readily in water. In aqueous state, the acid salt ionizes according to the equation below.

$$H_a(C_2O_4)_b.cH_2O(aq) \rightarrow aH^+(aq) + bC_2O_4^{2-}(aq) + cH_2O(l)$$

The Hydrogen ions from the acid salt react with hydroxyl ions from potassium hydroxide according to the equation below.

$$H^+(aq) + OH(aq) \rightarrow H_2O(l)$$

Acidified manganate(VII) ions from potassium manganate(VII) react with ethanedioate ions according to the equation below:


$$2MnO_4^{-1}(aq) + 16H^+(aq) + 5C_2O_4^{-2}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

Procedure I

Weigh accurately, 1.0g of solid J into a clean beaker. Add 100cm³ of distilled water using a measuring cylinder. Transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution HA3.

Pipette 20 or 25cm³ of HA3 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with HA1 from the burette until the end point is reached.

Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I

1 11010 1			
Final burette reading (cm ³)	22.90	24.70	22.60
Initial burette reading (cm ³)	0.00	2.00	0.00
Volume of HA1 used(cm ³)	22.90	22.70	22.60
	\/.X	\sqrt{X}	V X

Values used to calculate average 22.70, 22.60 cm³
Average volume of HA1 used $\left(\frac{22.70 + 22.60}{2}\right) = 22.65$ cm

Procedure II

Pipette 20 or 25cm³ of HA3 into a conical flask. Add an equal volume of HA4 and heat the mixture to 70^oC. Titrate the hot solution immediately with HA2 from the burette. Repeat the titration until you obtain consistent results. Record your results in table II below.

Table II

Final burette reading (cm ³)	16.20	15.90	21.90
Initial burette reading (cm ³)	0.00	0.00	6.00
Volume of HA2 used(cm ³)	16.20	15.90	15.90

Values used to calculateaverage 15.90, 15.90 cm

Average volume of HA2 used $\left(\frac{15.90 + 15.90}{2}\right) = 15.90$ cm

Questions

a) calculate the concentration of:

i) H⁺ in HA3 in moles per litre.

Molar mass of NaOH =
$$(23x1)+(16x1)+(1x1)=40g$$

40g of sodium hydroxide contain 1 mole.

2.8g of sodium hydroxide contain $\left(\frac{1}{40} \times 2.8\right)$ moles

= $0.07M$

```
1000cm<sup>3</sup> of HA1 contain 0.07 moles of sodium hydroxide.
       22.65cm<sup>3</sup> of HA1 contain \left(\frac{0.07}{1000} \times 22.65\right) woles of sodium hydroxide.
                                                  = 0.00159 moles of sodium hydroxide.
       Moles of H^+ = (1 \times moles \ of \ OH^-)
                          =(1x0.00159)
        25.0cm<sup>3</sup> of HA3 contain 0.00159 moles of H^+.
       1000cm<sup>3</sup> of HA3 contain \left(\frac{0.00159}{25.0} \times 1000\right) moles of H<sup>+</sup>.
= 0.0636 moles per litre
        ii) C<sub>2</sub>O<sub>4</sub><sup>2-</sup> in HA3 in moldm<sup>-3</sup>.
       1000cm<sup>3</sup> of HA2 contain 0.02 moles of MnO_4^-.
15.90cm<sup>3</sup> of HA1 contain \left(\frac{0.02}{1000} \times 15.90\right) moles of MnO_4^-.
                                                   = 0.00318 moles of MnO_4.
2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)
      Moles of C_2O_4^{2-} = (\frac{5}{2}x \text{ moles of } MnO_4^{-})
= \frac{5}{2}x \ 0.00318
= 0.000795
       25.0 \text{cm}^3 of HA3 contain 0.000795 moles of C_2 O_4^{2-}.
       1000cm<sup>3</sup> of HA3 contain \left(\frac{0.00795}{25.0} \times 1000\right) moles of C_2O_4^{2-}.
                                                 = 0.0318 moles per litre
  b) Determine the:
       i) ratio of a to b
                                           C_2Q_4^{2-}
       Reactants: H^+
       Molar concentration: 0.0636
                                         0.0636 0.0318
       Ratio:
        ∴Ratio of a to b is 2:1
       ii) value of c in H_a(C_2O_4)_b. cH_2O.
       250cm^3 of HA3 contain 1 g of H_2C_2O_4. cH_2C_3O_4
       1000cm<sup>3</sup> of HA3 contain \left(\frac{1}{250} \times 1000\right)g of H_2C_2O_4. cH_2O.
                                             = 4g of H_2C_2O_4. cH_2O per litre.
             H_2C_2O_4.cH_2O(aq) \rightarrow 2H^+(aq) + C_2O_4^{2-}(aq) + cH_2O(l)
        : Molar concentration of the acidic compound, H_2C_2O_4. cH_2O = (1 \times molar concentration of <math>C_2O_4^{2-})
                                                                                              = (1 \times 0.0318)
                                                                                               = 0.0318
```

0.0318 moles of
$$H_2C_2O_4$$
. cH_2O weigh $4g$
1 mole of $H_2C_2O_4$. cH_2O weigh $\left(\frac{4}{0.0318}\right)g$

$$= 125.8 \approx 126g$$

$$H_2C_2O_4$$
. $cH_2O = 126$

$$(1x2) + (12x2) + (16x4) + c[(1x2) + (16x1)] = 126$$

$$90 + 18c = 126$$

$$18c = 126-90$$

$$c = \frac{36}{18}; \quad c = 2$$

4.3.2Practical exercises involving acidified potassium manganate(VII)

Experiment 4.3.2.1

You are provided with the following:

FA1 which is asolution of potassium manganate(VII), KMnO₄

FA2 which is 2.0M sulphuric acid

Solid H which are crystals of sodium oxalate, Na₂C₂O₄

You are required to determine the concentration of:

i) sodium oxalate in FA3 in mol Γ^{I} .

ii) potassium manganate(VII) in FA1 in mol Γ^{1} .

Theory

Manganate(VII) ions are reduced in acididic medium according to the equation below:

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$$

Oxalate ions, C₂O₄²—undergo oxidationaccording to the equation below:

$$C_2O_4^{2-}(aq) \to 2CO_2(g) + 2e^{-}$$

Procedure

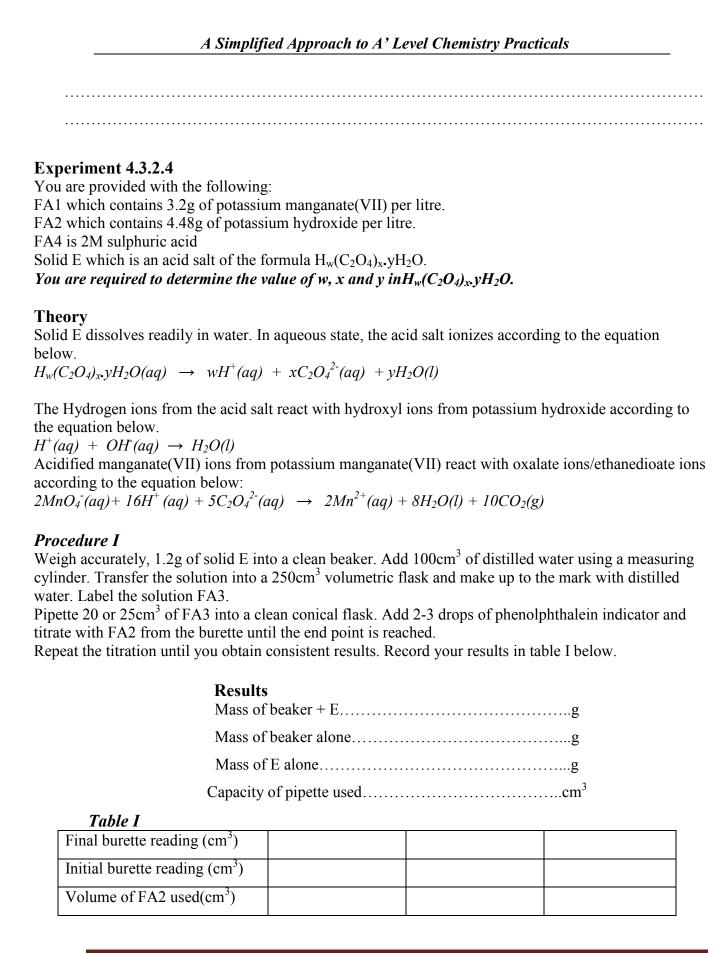
Weigh accurately 1.6g of H into a clean beaker. Add about 100cm³ of distilled water and stir well to dissolve. Transfer the solution into a 250cm³ volumetric flask and make up to the mark withdistilled water. Label this solution FA3.

Pipette 20 or 25cm³ of FA3 into a clean conical flask. Using a measuring cylinder, measure and add an equal volume of FA2 to the solution in the conical flask. Heat the mixture to about 60^oC and immediately titrate the hot solution with FA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Mass of beaker + H	2
	٠
Mass of beaker	2
Mass of H	2
=======================================	• • •

Capacity of pipette used	cm ³
Final burette reading (cm ³)	
Initial burette reading (cm ³)	
Volume of FA1 used(cm ³)	
	2
Values used to calculate average volume of FA1	
Average volume of FA1 used	cm ³
Questions a) Write the overall redox equation between acidified manga	
b) Calculate the concentration of:	
i) sodium oxalate in FA3 in moles per litre.	
ii) potassium manganate(VII) in FA1 in moles per litre.	

A Simpli	fied Approach to A' Level C	nemistry i ructicuts
xperiment 4.3.2.2		
ou are provided with the following are provided with the following and the following are provided as a second control of the following are provided with the f		
A2 which contains 11.5g of FeSO		n.
A3 which is 2.0M sulphuric acid	1.4 N. C.O.	
olid W which are crystals of soding are required to determine the		
i) concentration of potassium m		of Γ^I .
ii) value of x in FeSO ₄ . xH_2O .		
Va=23, C=12, H=1, Fe=56, S=32)		
anganate(VII) ions react with Fe $MnO_4(aq) + 8H^+(aq) + 5R^+(aq) + 5R^+(aq) + 8R^+(aq) + 8R^+(aq$	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O$	$O(1) + 5Fe^{3+}(aq)$
anganate(VII) ions react with Fe MnO ₄ (aq) + 8H ⁺ (aq) + 5A 2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I feigh accurately 1.4g of W into a ssolve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a fcm ³ of HA3 to the solution in the hot solution with HA1 from the stain consistent results. Record years	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until you
anganate(VII) ions react with Fe MnO ₄ (aq) + 8H ⁺ (aq) + 5A 2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I eigh accurately 1.4g of W into a solve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a cm ³ of HA3 to the solution in the hot solution with HA1 from the stain consistent results. Record you mass of beaker +	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until you
anganate(VII) ions react with Fe MnO ₄ (aq) + 8H ⁺ (aq) + 5A 2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I eigh accurately 1.4g of W into a solve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a cm ³ of HA3 to the solution in the hot solution with HA1 from the stain consistent results. Record you mass of beaker + Mass of beaker	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until youg
anganate(VII) ions react with Fe MnO ₄ (aq) + 8H ⁺ (aq) + 5A 2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I eigh accurately 1.4g of W into a solve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a cm ³ of HA3 to the solution in the hot solution with HA1 from the tain consistent results. Record you mass of beaker + Mass of beaker Mass of W	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until youg
anganate(VII) ions react with Fe MnO ₄ (aq) + 8H ⁺ (aq) + 5A 2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I eigh accurately 1.4g of W into a solve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a cm ³ of HA3 to the solution in the hot solution with HA1 from the tain consistent results. Record you mass of beaker + Mass of beaker Mass of W	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until youg
anganate(VII) ions react with Fe MnO ₄ (aq) + 8H ⁺ (aq) + 5A 2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I eigh accurately 1.4g of W into a solve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a cm ³ of HA3 to the solution in the hot solution with HA1 from the stain consistent results. Record you mass of beaker + Mass of beaker Mass of W	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until youg
2MnO ₄ (aq) + 16H ⁺ (aq) + rocedure I reigh accurately 1.4g of W into a ssolve. Transfer the solution into ater. Label this solution HA4. pette 20 or 25cm ³ of HA4 into a fcm ³ of HA3 to the solution in the hot solution with HA1 from the stain consistent results. Record you Mass of beaker + Mass of beaker Mass of W Capacity of pipette	$Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O_3$ $5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 4H_2O_3$ clean beaker. Add about 1000 a 250cm ³ volumetric flask and clean conical flask. Using a new conical flask. Heat the mixt be burette until the end point is pur results in the table below.	$O(l) + 5Fe^{3+}(aq)$ $-8H_2O(l) + 10CO_2(g)$ cm ³ of distilled water and stir well to and make up to the mark withdistilled measuring cylinder, measure and add ture to about 60° C and immediately titres reached. Repeat the titration until youg


Procedure II

	20 or 25cm ³ of HA2 into a			
	of HA3 to the solution in the reached. Repeat the titration			
below.	-	-		-
	Capacity of pipe	ette used		cm ³
Fi	nal burette reading (cm ³)			
In	itial burette reading (cm ³)			
Vo	olume of HA1 used(cm ³)			
Values	used to calculate average			cm ³
Averag	ge volume of HA1 used			cm ³
Questi	ions			
,	culate the concentration of:			
i) sodium oxalate in HA4 in r	noles per litre.		
•				
-				
i	i) potassium manganate(VII)) in HA1 in moles per	litre.	
•				
-				
	E do . H o . H o .	1 12		
1	ii) FeSO ₄ .xH ₂ O in HA2 in m	noles per litre.		
•				
•				
•				
-		•••••		

	A Simplifie	d Approach to A' L	evel Chemistry Pro	acticals	
b) D	etermine the value of x in FeSO ₂	1.xH2O.			•••••
0,2	••••••••••••••••••••••••••••••••••••••	,			
• • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••					
DA2 amm DA3 Solid You	which contains 0.675g of potass which is a solution containing the containing and the containing the containing and the containing the contai	g a mixture of iro er, (NH ₄) ₂ SO ₄ Fe(SO owder. ercentage of the iro	$n(II)$ sulphate hep $_{14})_3.12H_2O$.	tahydrate, FeSO ₄ .7F	I ₂ O and
On the and the	MnO ₄ ions from potassium man equation below: MnO_4 (aq) + $8H^+$ (aq) + $5H^+$ ($Fe^{2+}(aq) \rightarrow Mn^{2+}(aq)$ wder, when added to magnesium reduces nation below:	dq) + $4H_2O(l)$ + $5H_2O(l)$ + $5H_2O(l)$ o the DA2 mixture	$Fe^{3+}(aq)$ e, in the presence of a	n acid
Pipe the b	tte 20 or 25cm ³ of DA2 into a clourette until the end point is reachord your results in the table below	hed. Repeat the titra			rom
	Capacity of pipett	e used		cm ³	
	Final burette reading (cm ³)]
	Initial burette reading (cm ³)				-
	Volume of DA1 used(cm ³)				1

Valı	ues used to calculate average			cm ³
Ave	erage volume of DA1 used			cm ³
a) D	Determine the:			
	i) concentration of potassium ma	inganate(VII) in DA	1 moldm ⁻³ .	
	ii) concentration of Fe ²⁺ in DA2	in moldm ⁻³ .		
b) C	Calculate the mass of iron(II) sulph	iate heptahydrate, Fe	$eSO_4.7H_2O$ in 1dm ³	of the DA2 mixture.
		,	• • • • • • • • • • • • • • • • • • • •	
	cedure B			
Byu	use of a measuring cylinder, trans conical flask, add 2g of Magnesiu	fer 120cm ³ of DA2	into a clean conical	flask and to the solution in
	tion obtained is almost colourless			
	ette 20 or 25cm ³ of the clear part of			
	n DA1 from the burette until the e lts. Record your results in the tab	-	Repeat the titration	until you obtain consistent
				1
	Final burette reading (cm ³)			
	Initial burette reading (cm ³)			
	Volume of DA1 used(cm ³)			

Values used to calculate average	cm ²
Average volume of DA1 used	cm ²
c) Calculate the: i) total number of moles of Fe ²⁺ in the 160cm ³ of DA4.	
ii) total concentration of Fe ²⁺ in the DA2 solution used in <i>procedure I</i>	3 in mol dm ⁻³ .
ii) concentration of Fe ³⁺ in the DA2 solutionin mol dm ⁻³ .	
d) Determine the: i) total mass of the iron(II) and iron(III) salt in 1 dm³ of DA2.	
ii) percentage by mass of the iron(II) salt in the DA2 mixture.	

Values used to calculate average		 cm ³
Average volume of FA2 used		 cm ³
Procedure II Pipette 20 or 25cm ³ of FA3 into a composition of Table II Final burette reading (cm ³)	diately with FA1 from	
Initial burette reading (cm ³)		
Volume of FA1 used(cm ³)		
Values used to calculateaverage		
Average volume of FA2 used		 cm ³
Questions b) calculate the concentration of: i) H ⁺ in FA3 in moles per litre.		
ii) C ₂ O ₄ ²⁻ in FA3 in moldm ⁻³ .		

b) Determine the:i) ratio of wto x	
ii) value of y in H _w ($(C_2O_4)_x$. yH_2O .
FA2which is 1.5M sulp Solid J are4tablets of fe	Base of manganate(VII) ions, MnO ₄ in one litre of solution. Thuric acid rrous sulphate [iron(II) sulphate]. It is the percentage of the active constituent, that is, iron in a single tablet berrous sulphate).
and make up to the mar	linder, measure and transfer 190cm ³ of FA1 into a 250cm ³ of volumetric flask k with distilled water. Label the solution FA3. bstance J (the 4 tablets of Ferrous sulphate provided) and record your findings
	Mass of beaker + Jg
N	Mass of beaker aloneg
N	Mass of J aloneg

- iii)Crush the entire substance J you have weighed using a mortar and pestle and transfer the crushed substance into a clean conical flask. Add about 60cm³ of FA2and warm the mixture to about 70⁰C as you gently stir the content of the conical flask to ensure that all the powder dissolves.
- iv)Carefully filter the mixture into a clean beaker. Pour the solution in the beaker into a 100cm³ measuring cylinder and make up to the mark with distilled water. Transfer the solution into a clean beaker and label this solution FA4.
- v) Pipette 20 or 25cm³ of FA4 into a clean conical flaskand titrate with FA3from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

	Capacity of	pipette used		cm ³
	Final burette reading (cm ³)			
	Initial burette reading (cm ³)			
	Volume of FA3 used(cm ³)			
Va	lues used to calculate average			cm ³
	erage volume of FA3 used			
	Determine the concentration of I			
• • •				
b)	Calculate the number of moles in	ron(II) sulphate presen	nt in the entire mass	of J measured.
•••				
•••				
•••				
•••				
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •

	Calculate the
	i)mass of iron(II) sulphate, FeSO ₄ in the entire substance J measured.
	ii) mass of iron(II) sulphate, FeSO ₄ in a single tablet.
4)D	etermine the:
	i) mass of one tablet.
	·······
	::)
	ii) percentage of iron(II) sulphate in one tablet.
	iii) percentage of the active ingredient, iron in one tablet of ferrous sulphate.

Experiment 4.3.2.6

You are provided with the following:

FA1 which contains 1.35g of potassium manganate(VII) in 500cm³ of solution.

FA2 which ishydrogen peroxide solution

FA3 which is 1.5M sulphuric acid

You are required to determine the volume strength of the hydrogen peroxidesolution provided.

Theory

Hydrogen peroxide undergoes oxidation as shown by the equation below. $H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^-$

Capacity of pinette used

Procedure

Using a measuring cylinder, measure and transfer 25cm³ of FA2 into a 250cm³ volumetric flask. Add about 50cm³ of distilled water and shake well to mix and then make up to the mark by adding more distilled water. Label the solution FA4.

Pipette 20 or 25cm³ of FA4into a clean conical flask. Add an equal volume of FA3 using a measuring cylinder and titrate with FA1 from the buretteuntil the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

 cm^3

	- w _F)) F-F			
	Final burette reading (cm ³)				
	Initial burette reading (cm ³)				
	Volume of FA1 used(cm ³)				
Vo	lvos usad to calculate everage			cm	,3
va	lues used to calculate average			CII	I
Av	erage volume of FA1 used				
				cn	'n.
• • • •					
a)	Write the equation of reaction b				
					••
b)I	Determine the molar concentrati	ion of potassium man	ganate(VII) in FA1.		•
• • • •					•
• • •					٠
• • • •					
					_

c)Calcu	late the:
i)nuı	mber of moles of hydrogen peroxide in 250cm ³ of FA4.
,	
• • • • •	
•••••	
• • • • • •	
ii)ma	olar concentration of hydrogen peroxide in the FA2 solution.
11)111	one concentration of hydrogen peroxide in the 1712 solution.
• • • • •	
••••	
• • • • •	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	blume strength of hydrogen peroxide in the original FA2 solution.
	Wolume strength is the volume of oxygen gas liberated by 1cm³ of hydrogen peroxide solution;
1 mc	ele of a gas occupies 24dm³ at room temperature).
• • • • •	

Experiment 4.3.2.7

You are provided with the following:

FA1 which is a solution that contains 1.26g of anhydrous sodium sulphite, Na₂SO₃in 200cm³ of solution. FA2 which is potassium manganate(VII) solution.

2.0 M sulphuric acid solution.

Solid F which is impure ferrous ethanedioate, FeC₂O₄.

You are required to determine the:

- (i) molar concentration of the potassium mangante(VII) in FA2.
- (ii) percentage impurity in the ferrous ethanedioate sample.

Theory

Acidified manganate(VII) ions react with sulphite ions, iron(II) ions and ethanedioateions according to the following equations.

$$2MnO_4^{-1}(aq) + 6H^{+}(aq) + 5SO_3^{-2}(aq) \rightarrow 5SO_4^{-2}(aq) + 2Mn^{-2}(aq) + 3H_2O(l)$$

$$MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l) + 5Fe^{3+}(aq)$$

$$2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

Procedure I

Using a measuring cylinder, transfer 20cm³ of FA1 into a conical flask. Add 10cm³ of 2.0M sulphuric acid and titrate the solution with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used(cm ³)		

Titre values used to calculateaverage	cm ³
Average volume of FA2 used	cm ³

Procedure II

Weigh accurately 1.5g of F into a clean beaker. Add 100cm³ of 2.0M sulphuric acid and stir well to dissolve. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 25cm³ (or 20cm³) of FA3 into a conical flask and heat the solution to 70^oC. Titrate the hot solution with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table II below.

Mass of beaker + F	g
Mass of beaker	g
Mass of F	g
Capacity of pipette used	cm ³

Table II

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used(cm ³)		

Average volume of FA2 used
(i) molarity of potassium manganate(VII) in FA2. (Na=39, S=32, O=16)
(ii) moles of manganate(VII) ions that reacted with 25cm ³ (or 20cm ³) of FA3.
2 2
(iii) moles of iron(II) ions in 25cm ³ (or 20cm ³) of FA3.

(b) Determine the: (i) mass of ferrous ethanedioate, FeC_2O_4 in 250cm ³ of FA3. (Fe = 56, C=12, O=16)
(ii) percentage impurityin the ferrous oxalate sample.

4.4 Titrations involving iodine solution and sodium thiosulphate solution(Iodimetry and Iodometry Titrations)

a) Iodimetry titrations

These are titrations in which a standard solution of iodine is used directly in volumetric analysis. The standard iodine solution is used in oxidizing chemical species such as:

i)Thiosulphate ions (
$$S_2O_3^{2-}$$
) to Tetrathionate ions ($S_4O_6^{2-}$)
$$I_2(aq) + 2S_2O_3^{2-}(aq)2I^-(aq) + S_4O_6^{2-}(aq)$$

ii)Sulphite ions (SO₃²-) to Sulphate ions(SO₄²-)

Sulphite ions are oxidized by iodineto sulphate ions according to the equation below:

$$SO_3^{2-}(aq) + H_2O(1) + I_2(aq) \rightarrow SO_4^{2-}(aq) + 2H^{+}(aq) + 2\Gamma(aq)$$
(i)

Note: This reaction is used in iodimetry particularly when the iodine is present is in excess and some remains unreacted. The unreacted iodine is titrated against standard sodium thiosulphate solution. Since the hydrogen ions produced by the reaction above would react with thiosulphate ions resulting in precipitation of sulphur, before titration with standard sodium thiosulphate, about 2g of sodium hydrogencarbonate are added to the solution in the conical flask so as to react with all the hydrogen ions (to remove **all** the hydrogen ions from the solution) as shown below.

$$2HCO_3(aq) + 2H(aq) \rightarrow 2CO_2(aq) + 2H_2O(1)$$
(ii)

When equation (i) and (ii) are combined, then we can agree that sulphite ions are oxidised by iodine in the presence of hydrogenearbonate ions to sulphate ions according to the equation below:

$$SO_3^{2-}(aq) + I_2(aq) + 2HCO_3^{-}(aq) \rightarrow SO_4^{2-}(aq) + 2I^{-}(aq) + 2CO_2(aq) + H_2O(1)$$

$$\mathrm{Sn}^{2+}(\mathrm{aq}) + \mathrm{I}_2(\mathrm{aq})\mathrm{Sn}^{4+}(\mathrm{aq}) + 2\mathrm{I}^{-}(\mathrm{aq})$$

Note:In these titrations, starch indicator is used. Standard iodine solution is titrated against a suitable solution e.g. sodium thiosulphate solution until the iodine solution turns from intense brown to pale yellow. At this point, starch indicator is added whereby a blue-black/dark blue solution of the starch-iodine complex is formed. Titration is continued and the end point is indicated by the sudden change from a blue-black/dark blue solution to a colourless solution.

b) **Iodometry titrations**

These are titrations in which involve the titration of iodine liberated by a given chemical reaction. In order to liberate the iodine, a known amount of a suitable inorganic oxidizing agent in acidic medium, is reacted with a solution containing excess iodide ions (e.g a solution of excess potassium iodide or excess sodium iodide). The excess iodide ions are oxidized to form a reasonable amount of aqueous iodine which can then be titrated withstandard sodium thiosulphate.

Reactions that can liberate aqueous iodine include some of the following:

ClO₃⁻(aq) + 6I⁻(aq) + 6H⁺(aq)
$$\rightarrow$$
 Cl⁻(aq) + H₂O(l) + 3I₂(aq)
IO₃⁻(aq) + 5I⁻(aq) + 6H⁺(aq) \rightarrow H₂O(l) + 3I₂(aq)
OCl⁻(aq) + 2I⁻(aq) + 2H⁺(aq) \rightarrow Cl⁻(aq) + H₂O(l) + 3I₂(aq)
Cr₂O₇²⁻(aq) + 14H⁺(aq) + 6I⁻(aq) \rightarrow 2Cr³⁺(aq) + 7H₂O(l) + 3I₂(aq)
2MnO₄⁻(aq) + 16H⁺(aq) + 6I⁻(aq) \rightarrow 2Mn²⁺(aq) + 8H₂O(l) + 5I₂(aq)
H₂O₂(aq) + 2H⁺(aq) + 2I⁻(aq) \rightarrow 2H₂O(l) + I₂(aq)

Some reactions may not require an acidic medium e.g:

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow Cu_{2}I_{2}(s) + I_{2}(aq)$$

 $Cl_{2}(aq) + 2I^{-}(aq) \rightarrow 2Cl^{-}(aq) + I_{2}(aq)$

Note:

1)The aqueous iodine liberated in all the situations above is titrated against standard sodium thiosulphate solution and the reaction that occurs is shown by the following equation.

$$I_2(aq) + 2S_2O_3^2(aq) \rightarrow 2I(aq) + S_4O_6^2(aq)$$

2)Some times, to simplify the application of the mole ratio, the equation of the reaction leading to the liberation of iodine may be combined with the one for the reaction of the liberated iodine with thiosulphate ions so that the iodine is eradicated from the combined overall equation. For instance, combining the following equations:

Cr₂O₇²-(aq) + 14H⁺(aq) + 6I⁻(aq)
$$\rightarrow$$
 2Cr³⁺(aq) + 7H₂O(l) + 3I₂(aq)......(i)
I₂(aq) + 2S₂O₃²-(aq) \rightarrow 2I⁻(aq) + S₄O₆²-(aq)(ii)

To eradicate the iodine from both equations, equation (ii) is multiplied by 3 to give us the following combined overall equation:

$$3I_2(aq) + 6S_2O_3^{2-}(aq) \rightarrow 6I(aq) + 3S_4O_6^{2-}(aq)$$
(iii)

Combining equation (i) and (iii) gives us the following equation:

$$Cr_2O_7^{2-}(aq)+14H^+(aq)+6S_2O_3^{2-}(aq) \rightarrow 2Cr^{3+}(aq)+7H_2O(1)+3S_4O_6^{2-}(aq)$$

3) Acidifiedpotassium dichromate(VI) solution is commonly associated with iodometry titrations.

4.4.1 Worked out examples on Iodimetry and Iodometry Titrations

Worked out example 4.4.1.1

You are provided with the following:

FA1 which is iodine solution

Substance L which is sodium thiosulphate pentahydrate, Na₂S₂O₃.5H₂O.

You are required to determine the molar concentration of iodine solution in FA1.

Theory

Aqueousiodine reacts with thiosulphate ions according to the following equation.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I(aq) + S_4O_6^{2-}(aq)$$

Procedure

- i) Using a measuring cylinder, measure and transfer 150cm³ of FA1 into a 250cm³ volumetric flask and make up to the mark with distilled water. Transfer the solution into a clean beaker and label it FA2. Rinse the volumetric flask properly for use in procedure (ii) below.
- ii)Weigh accurately, 4.6g of substance Linto a clean beaker. Add about 100cm³ of water and stir well to dissolve. Transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.
- iii) Pipette 20 or 25cm³ of FA2 into a clean conical flask and titrate with FA3 from the burette until the solution turns pale yellow. Add 1cm³ of starch solutionand continue the titration until the solution just turns colourless. Repeat the titration until you obtain consistent results. Record your results in the table below.

Results Mass of beaker + L	44.80	
Mass of beaker alone	40.20g	
Mass of L alone	g	
Capacity of pipette used		

Final burette reading (cm ³)	18.00	17.80	23.70
Initial burette reading (cm ³)	0.00	0.00	6.00
Volume of FA3 used(cm ³)	18.00	17.80	17.70
	<u> </u>	<u> </u>	<u> </u>

.....

a) Determine the molar concentration sodium thiosulphate in FA3. (Na=23, S=32, O=16, H=1)

Molar mass of Na₂S₂O₃.
$$5H_2O = [(23x2) + (32x2) + (16x3) + (5x18)] = 248g$$

248g of sodium thiosulphate contain 1 mole

4.6 moles of sodium thiosulphate contain:
$$\left(\frac{1}{248} \times 4.6\right)$$
 moles = 0.0185 moles

 $250cm^3$ of FA3 contain 0.0185 moles of sodium thiosulphate $1000cm^3$ of FA3 contain $\left(\frac{0.0185}{250} \times 1000\right)$ notes of sodium thiosulphate per litre $= 0.0742 \, M$

b) Calculate the number of moles of aqueous iodine in FA2 that reacted with thiosulphate ions in FA3. $1000cm^3$ of FA3 contain 0.0742moles of sodium thiosulphate

$$17.75$$
cm³ of FA3 contain $\left(\frac{0.0742}{1000} \times 17.75\right)$ motes of sodium thiosulphate

=0.00132males of sodium thiosulphate

Moles of
$$I_2 = \frac{1}{2}x$$
 moles of $S_2O_3^2$
= $\left(\frac{1}{2} \times 0.00132\right) = 0.000658$ moles of I_2

c) Determine themolar concentration of aqueous iodine in the original FA1 solution.

 $25cm^3$ of FA2 contain 0.000658 moles of I_2

250cm³ of FA2 contain
$$\left(\frac{0.00658}{25} \times 250\right)$$
 moves of I_2
= 0.00658 woles of I_2

150cm³ of FA1 contain 0.00658 moles of
$$I_2$$

1000cm³ of FA1 contain $\left(\frac{0.00658}{150} \times 1000\right)$ moles of I_2
=0.0439M

Worked out example 4.4.1.2

You are provided with the following:

FA1 which is 10% potassium iodide solution

FA2 which is sodium thiosulphate solution

FA3 which is potassium dichromate(VI) solution

1M sulphuric acid

Solid W which is potassium iodate, KIO₃

You are required to determine the concentration of:

- i) sodium thiosulphate in FA2 in moldm⁻³.
- ii) potassium dichromate(VI) In FA3 in gdm⁻³.

Theory

Iodate ions in acidic medium, react with iodide ions according to the equation below:

$$IO_3^-(aq) + 6H^+(aq) + 5I^-(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$$
....(*)

Iodide ions are oxidized toaqueous iodine according to the following equation:

$$2I^-(aq) \rightarrow I_2(aq) + 2e^-$$

Note: Equation (*) above is arrived at through the following series of reactions.

$$2IO_3^-(aq) + 12H^+(aq) + 10e^- \rightarrow I_2(aq) + 6H_2O(l)$$
....(i)

$$2I^{-}(aq) \rightarrow I_2(aq) + 2e^{-}$$
 (ii)

Multiplying equation (ii) by 5 gives:

$$10I^{-}(aq) \rightarrow 5I_{2}(aq) + 10e^{-}$$
 (iii)

Adding equation (i) to (iii) gives:

$$2IO_3^-(aq) + 12H^+(aq) + 10I^-(aq) \rightarrow I_2(aq) + 6H_2O(l) + 5I_2(aq)$$
(iv) Dividing equation (iv) by 2 gives:
 $IO_3^-(aq) + 6H^+(aq) + 5I^-(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$

PART I

Procedure

Weigh accurately, 2.7g of W into a clean beaker. Add about 150cm³ of distilled water and stir well to dissolve. Transfer the solution into a 250cm³volumetric flask and make up to the mark with distilled water. Label the resultant solution FA4.

Pipette 10cm³ of FA4 into a conical flask. Using a measuring cylinder, add 10cm³ of FA1 followed by 10cm³ of 1M Sulphuric acid and shake well to mix and titrate with FA2 from the buretteuntil the solution turns pale yellow/pale brown. Then add 2cm³ of starch indicator and continue titrating with FA2 until the blue-black starch-iodine complex is just discharged. Record your results in the spaces below.

Mass of container + W	45.1	g
Mass of container alone	42.4	g
Mass of solid W	2.7	g
Mass of solid W	25.0.	cm ³

Tahle I

1 wote 1			
Final burette reading (cm ³)	09.70	09.50	15.50
Initial burette reading (cm ³)	0.00	0.00	6.00
Volume of FA2 used(cm ³)	09.70	09.50	09.50
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1//	17.4

Average volume of FA3 used..... $\left(\frac{09.50 + 09.50}{2}\right) = 09.50$

Ouestions

a) Calculate the concentration of the potassium iodate in FA4 in mol dm⁻³.

Molar mass of KIO₃ =
$$[(39x1) + (127x1) + (16x3)]$$
 = 214g of potassium iodate contain 1 mole 2.7g of potassium iodate contain $(\frac{1}{214} \times 2.7)$ moles 250cm³ of FA4 contain $(\frac{2.7}{214} \times 1000)$ moles 1000cm³ of contain $(\frac{2.7}{214 \times 250} \times 1000)$ moles per dm³ = 0.05 moldm⁻³

b) Determine the concentration of the sodium thiosulphate in FA2 in moldm⁻³.

$$1000$$
cm³ of FA4 contain 0.05 moles of IO_3^{-1}
 10 cm³ of FA4 contain $\left(\frac{0.05}{1000} \times 10^{-1000}\right)$ moles of

10cm³ of FA4 contain
$$\left(\frac{0.05}{1000} \times 10\right)$$
 moles of IO_3^-
=0.0005 moles of IO_3^-

Moles of
$$I_2 = 3x$$
moles of IO_3^-
= $(3x0.0005)$
= 0.0015
 $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$
Moles of $S_2O_3^{2-} = (2x$ moles of $I_2)$
= $(2x0.0015)$
= 0.003
 9.50 cm³ of FA2 contain 0.003 moles of $S_2O_3^{2-}$
 1000 cm³ of FA2 contain $\left(\frac{0.003}{9.50} \times 1000\right)$ moles of $S_2O_3^{2-}$
= 0.316 moldm⁻³

PART II

Procedure

Pipette 10cm³ of FA3 into a conical flask. Using a measuring cylinder, add 20cm³ of 1M sulphuric acid followed by 10cm³ of FA1 and shake well to mix and titrate with FA2 from the buretteuntil the solution is pale yellow. Then add 2cm³ of Starch indicator and titrate continue the titration with FA2 until the solution turns pale blue. Repeat the titration until you obtain consistent results. Record your results in the table below.

Table II

Final burette reading (cm ³)	45.60	45.40	46.40
Initial burette reading (cm ³)	0.00	0.00	1.00
Volume of FA2 used(cm ³)	45.60	45.40	45.40
	\	\ <i>/ X</i>	- \ \ X

c) Calculate the number of moles of the liberated iodine that reacted with thiosulphate ions in FA2.

1000cm³ of FA2 contain 0.316 moles of
$$S_2O_3^{2-}$$

45.40cm³ of FA2 contain $\left(\frac{0.316}{1000} \times 45.40\right)$ moles of $S_2O_3^{2-}$

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$$
Moles of $I_2 = \frac{1}{2}x$ moles of $S_2O_3^{2-}$

$$= \frac{1}{2}x \left(\frac{0.316}{1000} \times 45.40\right)$$

$$= 0.00717 \text{ moles of } I_2$$

d) Determine the concentration of potassium dichromate in FA3 in gdm⁻³.(K=39, Cr=52, O=16)

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6\Gamma(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l) + 3I_2(aq)$$

Moles of
$$Cr_2O_7^{2^2} = \frac{1}{3}x$$
 moles of I
= $\frac{1}{3}$ x 0.00717
= 0.00239 moles of $Cr_2O_7^{2^2}$

10cm³ of FA3 contain 0.00239 moles of
$$Cr_2O_7^{2-}$$

1000 cm³ of FA3 contain $\left(\frac{0.00239}{10} \times 1000\right)$ moles of $Cr_2O_7^{2-}$
 $= 0.239$ mol dm⁻³
Molar mass of $K_2Cr_2O_7 = [(39x2) + (52x2) + (16x7)] = 294g$
1 mole of $K_2Cr_2O_7$ weighs 294g
0.239 moles of $K_2Cr_2O_7$ weigh (294 x 0.239)g
 $= 70.266$ gdm⁻³

Worked out example 4.4.1.3

You are provided with the following:

GA1 which contains 3.6g of potassium dichromate(VI) per litre.

GA2 which is hydrogen peroxide solution

GA3 which is sodium thiosulphate pentahydrate

GA4 which is 10% potassium iodide solution

1.5M sulphuric acid

You are required to determine the:

- i) concentration of sodium thiosulphate in grams per litre in GA3.
- ii) volume strength of the hydrogen peroxide solution in GA2.

$$(K=39, Cr = 52, O=16)$$

Theory

In acidic medium, dichromate(VI) ions and Hydrogen peroxide react with iodide ions as shown by the equations below.

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6\Gamma(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l) + 3I_2(aq)$$

 $H_2O_2(aq) + 2H^+(aq) + 2\Gamma(aq) \rightarrow I_2(aq) + 2H_2O(l)$

Procedure I

Pipette 20 or 25cm³ of GA1 into a clean conical flask. Add an equal volume of GA4 followed by 30cm³ of 1.5M sulphuric acid using a measuring cylinder and titrate with GA3 from the burette until the solution turns pale yellow; add 1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex turns pale blue. Record your results in table I below.

Table I

Final burette reading (cm ³)	23.10	34.90	22.90
Initial burette reading (cm ³)	0.00	12.00	0.00
Volume of GA3 used(cm ³)	23.10	22.90	22.90

Values used to calculate average. (22.90, 22.90) cm³
Average volume of FA3 used. $(\frac{22.90 + 22.90}{2})$... = $(\frac{22.90 + 22.90}{2})$... = $(\frac{22.90 + 22.90}{2})$...

- a) Determine the molar concentration of:
 - i) potassium dichromate(VI) in GA1. Molar Mass of $K_2Cr_2O_7 = [(39x2) + (52x2) + (16x7)] = 294g$ 294g of $K_2Cr_2O_7$ contain 1 mole 3.6g of $K_2Cr_2O_7$ contain $(\frac{1}{294} \times 3.6)$ moles = 0.012M
 - ii) sodium thiosulphate in GA3.

1000cm³ of GA1 contain 0.012 moles of
$$Cr_2O_7^{2-2}$$

25cm³ of GA1 contain $\left(\frac{0.012}{1000} \times 25\right)$ moles of $Cr_2O_7^{2-2}$
= 0.0003 moles of $Cr_2O_7^{2-2}$
Moles of I_2 formed = (3xmoles of $Cr_2O_7^{2-2}$)
= (3x0.0003)
= 0.0009
 $I_2(aq) + 2S_2O_3^{2-2}(aq) \rightarrow 2I(aq) + S_4O_6^{2-2}(aq)$
Moles of $S_2O_3^{2-2} = (2xmoles of I_2)$
= (2x0.0009)
= 0.0018
22.90cm³ of GA3 contain 0.0018 moles of $S_2O_3^{2-2}$
1000cm³ of GA3 contain $\left(\frac{0.00182}{22.90} \times 1000\right)$ moles of $S_2O_3^{2-2}$
= **0.0786M**

Procedure II

Using a measuring cylinder, measure and transfer 75cm³ of GA3 into a clean beaker. Add 75cm³ of distilled water, shake well to mix and label the solution GA5.

Pipette 20 or 25cm³ of GA2 into a clean conical flask. Add an equal volume of GA4 followed by 30cm³ of 1.5M Sulphuric acid using a measuring cylinder. Leave the mixture to settle for 10 minutes and then titrate with GA5 from the burette as you shake the conical flask and its contents vigorously until the solution turns pale yellow; add 1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex turns colourless. Record your results in table II below.

Table II

Final burette reading (cm ³)	31.40	39.20	31.10
Initial burette reading (cm ³)	0.00	8.00	0.00
Volume of GA5 used(cm ³)	31.40	31.20	31.10

Values used to calculate average.
$$31.20, 31.10$$
 cm

Average volume of GA5 used. $\left(\frac{31.20 + 31.10}{2}\right)$ = 31.15. cm³

- b) Calculate the:
 - i) molar concentration of sodium thiosulphate in GA5.

$$1000$$
cm³ of GA3 contain 0.0786 moles of $S_2O_3^{2-}$

$$75cm^{3} of GA3 \ contain\left(\frac{0.0786}{150} \times 75\right) \ moles \ of S_{2}O_{3}^{2-} = 0.005895 \ moles \ of S_{2}O_{3}^{2-}$$

Total volume of
$$GA5 = (75 + 75)^{2} = 150 \text{cm}^{3}$$

Total volume of GA5=
$$(75+75) = 150 \text{cm}^3$$

 $150 \text{cm}^3 \text{ of GA5 contain } 0.005895 \text{ moles of } S_2 O_3^{2-1}$
 $1000 \text{cm}^3 \text{ of GA5 contain} \left(\frac{0.005895}{150} \times 1000\right) \text{ moles of } S_2 O_3^{2-1}$
 $= 0.0393 \text{ M}$

ii) molar concentarion of hydrogen peroxide in the GA2 solution.

1000cm³ of GA5 contain 0.0393 moles of
$$S_2O_3^{2-}$$

31.15cm³ of GA5 contain $\left(\frac{0.0393}{1000}x31.15\right)$ moles of $S_2O_3^{2-}$

$$= 0.00122$$
 moles of $S_2O_3^{2-}$

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$$

Moles of
$$I_2$$
 that reacted = $(\frac{1}{2}x \text{ moles of } S_2O_3^2)$
= $(\frac{1}{2}x 0.00122)$

$$=\left(\frac{1}{2}x\ 0.00122\right)\mathbf{V}$$

$$=0.000612$$
 moles of I_2

Moles of H_2O_2 that reacted = (1xmoles of I_2 formed)

$$= (1 \times 0.000612)$$

$$= 0.000612$$

$$= 0.000612$$
25cm³ of GA2 contain 0.000612moles of H_2O_2

$$1000cm³ of GA2 contain \left(\frac{0.000612}{25}x \ 1000\right) moles of $H_2O_2$$$

- iii) volume strength of hydrogen peroxide in the GA2 solution.
- (NB: Volume strength is the volume of oxygen gas liberated by 1cm³ of hydrogen peroxide solution; 1 mole of a gas occupies 24dm³ at room temperature)

1000cm³ of GA2 contain 0.0245moles of H_2O_2

$$1cm^{3} of GA2 contains \left(\frac{0.0245}{1000}\right) \text{ moles of } H_{2}O_{2}$$

$$= 0.0000245 moles of H_{2}O_{2}$$

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

2moles of hydrogen peroxide evolve 1 mole of oxygen gas

0.0000245 moles of hydrogen peroxide evolve $\left(\frac{1}{2}x\ 0.0000245\right)$ moles of oxygen gas = 0.00001225 moles of oxygen gas

1 mole of oxygen gas occupies 24dm³ at room temperature 0.00001225 moles of oxygen gas occupy (24x0.00001225) dm³ at room temperature

Volume strength of hydrogen peroxide in $GA2 = 0.000294 dm^3$

Worked out example 4.4.1.4

You are provided with the following:

FA1 which is a solution that contains 11.16g of sodium thiosulphate pentahydrate, Na₂S₂O₃.5H₂O in 500cm³ of solution.

FA2 which is potassium manganate(VII) solution.

- 0.6M potassium iodide solution.
- 2.0M sulphuric acid solution.

Solid V which is impure ferrous ethanedioate, FeC₂O₄.

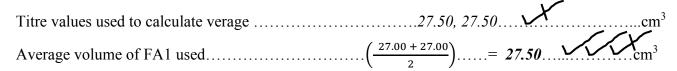
You are required to determine the:

- (i) molarity of the potassium mangante(VII) solution.
- (ii) percentage impurity in the ferrous ethanedioate sample.

Theory

Acidified manganate(VII) ions react with thiosulphate ions, iron(II) ions and ethanedioate ions according to the following equations.

$$2MnO_4^{-}(aq) + 16H^{+}(aq) + 10S_2O_3^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5S_4O_6^{2-}(aq)$$


$$MnO_4^{-}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l) + 5Fe^{3+}(aq)$$

$$2MnO_4^{-}(aq) + 16H^{+}(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

Procedure I

Pipette 25cm³ (or 20cm³) of FA2 into a conical flask. Add 15cm³ of 2.0M sulphuric acid followed by 15cm³ of 0.6M potassium iodide solution and titrate the solution with FA1 from the burette until the solution becomes pale yellow. Add 1cm³ of starch indicator and continue the titration until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I			
Final burette reading (cm ³)	27.80	33.50	29.50
Initial burette reading (cm ³)	0.00	6.00	2.00
Volume of FA1 used(cm ³)	27.80	27.50	27.50

Procedure II

Weigh accurately 1.5g of V into a clean beaker. Add 100cm³ of 2.0M sulphuric acid and stir well to dissolve. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark by addition of more distilled water. Label the solution FA3.

Pipette 25cm³ (or 20cm³) of FA3 into a conical flask and heat the solution to 70^oC. Titrate the hot solution with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table II below.

Mass of beaker + V	30.7	_
Mass of beaker	37.2	g
Mass of V	1.5.	g
Capacity of pipette used	25.0	\dots cm ³

Table II

Final burette reading (cm ³)	27.00	31.10	27.00
Initial burette reading (cm ³)	0.00	4.00	0.00
Volume of FA2 used(cm ³)	27.00	27.10	27.00

Average volume of FA2 used $\left(\frac{27.00 + 27.00}{3}\right)$...

(a) Calculate the:

(i) molarity of potassium manganate(VII) in FA2. (Na=39, S=32, O=16)

Molar mass of
$$Na_2S_2O_3.5H_2O = [(23x2) + (32x2) + (16x3) + (5x1x2) + (16x5)] = 248g$$

248g of $Na_2S_2O_3.5H_2O$ contains l mole
11.16g of $Na_2S_2O_3.5H_2O$ contains $(\frac{1}{2} \times 11.16)$ moles $= 0.045$ moles

11.16g of
$$Na_2S_2O_3.5H_2O$$
 contains $\left(\frac{1}{248} \times 11.16\right)$ moles = 0.045 moles

248g of Na₂S₂O₃.5H₂Ocontains 1 mole
11.16g of Na₂S₂O₃.5H₂Ocontains
$$\left(\frac{1}{248} \times 11.16\right)$$
 moles = 0.045moles
500cm³ of FA1 contain 0.045moles of S₂O₃²—
1000cm³ of FA1 contain $\left(\frac{0.045}{500} \times 1000\right)$ moles of S₂O₃²—
= **0.09M**

$$1000 \text{cm}^3 \text{ of } FA1 \text{ contain } 0.09 \text{ moles of } S_2 O_3^2$$

1000cm³ of FA1 contain 0.09 moles of
$$S_2O_3^2$$

27.50cm³ of FA1 contain $\left(\frac{0.09}{1000} \times 27.50\right)$ moles of $S_2O_3^2$
= 2.475x10⁻³ moles of $S_2O_3^2$

Moles of
$$MnO_4^- = \frac{2}{10}x$$
 moles of $S_2O_3^2 = \frac{2}{10}x$ 2.475 x 10⁻³ = 4.95 x 10⁻⁴moles

$$25cm^{3}$$
 of FA2 contain $4.95x10^{-4}$ moles of MnO_{4}^{-1}

25cm³ of FA2 contain
$$^{10}_{4.95x10^{-4}}$$
 moles of MnO₄ $^{-1}_{4.95x10^{-4}}$ x 1000) moles moles of MnO₄ $^{-1}_{4.95x10^{-4}}$ x 1000) moles moles of MnO₄ $^{-1}_{4.95x10^{-4}}$ = 0.0198M

(ii) moles of manganate(VII) ions that reacted with 25cm³ (or 20cm³) of FA3. 1000cm³ of FA2 contain 0.0198 moles of MnO₄

$$27.00 cm^{3} of FA2 contain \left(\frac{0.0198}{1000} \times 27.00\right) \text{ Moles of } MnO_{4}^{-}$$

$$= 5.346 \times 10^{-4} \text{ moles of } MnO_{4}^{-}$$

(iii) moles of iron(II) ions in 25cm³ (or 20cm³) of FA3.

Combining the two equations of reaction between MnO_4 and both Fe^{2+} and $C_2O_4^{2-}$, we have:

$$3MnO_4^{-}(aq) + 24H^{+}(aq) + 5Fe^{2+}(aq) + 5C_2O_4^{2-}(aq) \rightarrow 3Mn^{2+}(aq) + 12H_2O(l) + 5Fe^{3+}(aq) + 10CO_2(g)$$

Moles of
$$Fe^{2+} = \frac{5}{3}x$$
 moles of MnO_4^-
= $\left(\frac{5}{3}x \ 5.346x10-4\right) = 8.91x10^{-4}$ moles

- (b) Determine the:
- (i) mass of ferrous ethanedioate, FeC_2O_4 in 250cm³ of FA3. (Fe = 56, C=12, O=16) $25cm^3$ of FA3 contain $8.91x10^{-4}$ moles of FeC_2O_4

250cm³ of FA3 contain
$$\left(\frac{8.91x10-4}{25}x 250\right)$$
 moles of FeC₂O₄
= $8.91x10^{-3}$ moles of FeC₂O₄

Molar mass of
$$FeC_2O_4 = (56x1) + (12x2) + (16x4) = 144g$$

Imole of FeC_2O_4 weighs 144g
 $8.91x10^{-3}$ moles of FeC_2O_4 weighs (144 x 8.91x10⁻³)g
= 1.283g

(ii) percentage impurity in the ferrous ethanedicale sample. Mass of the impurity in the sample = (1.5-1.283) = 0.217gPercentage impurity = $\left(\frac{mass\ of\ the\ impurity}{total\ mass\ of\ impure\ sample} x\ 100\right)\%$

$$\left(\frac{0.217}{1.5}x\ 100\right)\% = 14.47\%$$

4.4.2Practical Exercises on Iodimetry and Iodometry Titrations

Experiment 4.4.2.1

You are provided with the following:

FA1 which is 0.06M iodine solution

FA2 which is a solution containing 17.4g of themetal thiosulphate, $XS_2O_3.5H_2O$ in one litre of solution. You are required to determine the molarity of the metal thiosulphate in FA2 and hence the value of X

Theory

in $XS_2O_3.5H_2O$.

Aqueous iodine reacts with thiosulphate ions according to the following equation.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$$

Procedure

- i) Using a measuring cylinder, measure and transfer 100cm³ of FA1 into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.
- ii) Pipette 20 or 25cm³ of FA3 into a clean conical flask and titrate with FA2 from the burette until the solution turns pale yellow. Add 1cm³ of starch solution and continue the titration until the solution just turns colourless. Repeat the titration until you obtain consistent results. Record your results in the table below.

Capacity of pipette used	cm ³
Final burette reading (cm ³)	
Initial burette reading (cm ³)	
Volume of FA2used(cm ³)	
Values used to calculate average	cm ³
Average volume of FA2 used	
a) Calculate the molarity of iodine in FA3.	
1) 5	
b) Determine the:i) number of moles of thiosulphate ions in FA2 that	t reacted with the jodine in EA3
i) hamoer of moles of thiosurphate ions in 1742 tha	reacted with the founce in 1745
ii) molarity of the thiosulphate ions in FA2 and her (S=32, O=16, H=1)	nce the value of X in $XS_2O_3.5H_2O$.
(5 32, 6 10, 11 1)	

Experiment 4.4.2.2

You are provided with the following:

FA1 which is potassium manganate(VII) solution

FA2 which issodium thiosulphate solution

FA3 which is 10% potassium iodide solution

FA4 which is 2.0M sulphuric acid

Solid M which is potassium dichromate(VI)

You are required to determine the molar concentration of FA2 and then use it to determine the molar concentration of FA1.

Theory

Dichromate(VI) ions and manganate(VII) ions in an acidic medium, react with iodide ionsaccording to the following equations:

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6\Gamma(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l) + 3I_2(aq)$$

 $2MnO_4(aq) + 16H^+(aq) + 6\Gamma(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5I_2(aq)$

Aqueous iodine reacts with thiosulphate ions according to the following equation.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$$

Procedure I

Weigh accurately 1.4g of solid M into a clean beaker. Measureand transfer about 60cm³ of FA4 into the beaker containing solid M and stir well to dissolve. Transfer the solution into a 250cm³ volumetric flaskand make up to the mark with distilled water. Label the solution FA5.

Pipette 20 or 25cm³ of FA5 into a conical flask. Add 15cm³ of FA3 followed by 15cm³ of FA4. Titrate the resultant mixture with FA2 from the burette until the solution turns pale yellow. Add 1cm³ of Starch solution and continue the titration until the solution turns from dark blue to a pale blue solution. Repeat the titration until you obtain consistent results. Record your results in table I below.

Mass of container + M	g
Mass of container alone	g
Mass of solid M	g
Capacity of pipette used	cm ³

Table I

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used(cm ³)		

Values used to calculate average	cm ³
Average volume of FA2 used.	cm ³

(K=39, Cr=52, O=16	ons in the 20 or 6).	25cm ³ of FA	A5 pipetted.		
			•••••		
ii) molar concentration of FA2					
tte 20 or 25cm ³ of FA1 into a cate the resultant mixture with F ch solution and continue the titr in consistent results. Record yo	A2 from the buration until the	rette until the end point is r	e solution to	ırns pale yel	low. Add 1cm
tte 20 or 25cm ³ of FA1 into a cate the resultant mixture with F ch solution and continue the titrin consistent results. Record your able II	A2 from the buration until the	rette until the end point is r	e solution to	ırns pale yel	low. Add 1cm
tte 20 or 25cm ³ of FA1 into a cate the resultant mixture with F ch solution and continue the titrin consistent results. Record yo Table II Final burette reading (cm ³)	A2 from the buration until the	rette until the end point is r	e solution to	ırns pale yel	low. Add 1cm
ecedure II Itte 20 or 25cm ³ of FA1 into a cate the resultant mixture with Finds continue the titre in consistent results. Record your able II Final burette reading (cm ³) Initial burette reading (cm ³) Volume of FA2 used(cm ³)	A2 from the buration until the	rette until the end point is r	e solution to	ırns pale yel	low. Add 1cm

b) Г	Determine the molar concentration o	f F	F A 1					
••••								
Ex	periment 4.4.2.3							
	are provided with the following:	_				3		
	1 which is a solution containing 1.1 2which is a solution made by dissol							•O in one
	e of solution.	VII	iig 25.0g 01 a	ınyaı	atcu mcta	ı unosur	mate, 14152O3.X11	20 III OIIC
	3 is 10% potassium iodide solution							
	4 is 2M sulphuric acid							
	id T which is impure potassium ioda	ite	ϵ , KIO ₃ .					
i) ı	i are required to determine the: molarity of the hydrated metal thios he metal thiosulphate, MS ₂ O ₃ .xH ₂ 0	-	lphate in HA	2 and	d the perc	entage oj	f water of crystal	llization ii
ii)	percentage purity of the potassium	io	odate used in	the p	preparatio	n of HA	1.	
The	eory							
	cidic medium, CrO ₄ ²⁻ ions are conve	ert	ed to dichror	nate i	ons accor	ding to th	ne following equa	ation:
Q. I	$2CrO_4^{2-}(aq) + 2H^+(aq) \rightarrow Cr_2$	O_7	$a_{2}^{2}(aq) + H_{2}C$	(aq)		1. 4 41	ı: 1 1	
Stil	I, in acidic medium, IO_3 and Cr_2O_7	r	react with 100 $3I_2(aa) + 3I_3(aa)$	11de 10 8 <i>H</i> 2O	ons accord	ling to the	e equations belov	W:
	$IO_3^-(aq) + 6H^+(aq) + 5\Gamma(aq)$ $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6\Gamma$	(ac	$q \rightarrow 2Cr^{3+}$	(qq) +	7H ₂ O(l) -	$+3I_2(aq)$		
D 4	D.T. I							
	<i>RT I</i> ocedure							
	ette 20 or 25cm ³ of HA1 into a clea	ın	conical flask	Ado	1 30cm ³ o	f the 2M	sulphuric acid fo	ollowed b
10c	m ³ of the 10% potassium iodide s	olı	ution and tit	rate v	with HA2	from th	e burette until tl	he solutio
	omes pale yellow; then add 1cm ³							
	ation just turns to a pale bluesolution results in table I below.	n.	Repeat the	titrati	on until y	ou obtaii	n consistent resu	lts. Recor
you	r results in table r below.							
	Capacity of	pi	pette used				cm ³	
	Table I							
	Final burette reading (cm ³)							
	Initial burette reading (cm ³)	\dashv						
	Volume of HA2 used(cm ³)	+						

Values used to calculate average	cm ³
Average volume of HA2 used	cm ³
Questions a) Calculate the number of moles of CrO_4^{2-} ions in the 20 or 25cm ³ of HA1 pip	
b) Determine the: i) molarity of the $S_2O_3^{2-}$ ions in HA2.	
ii)value of x in MS ₂ O ₃ .xH ₂ O.(M=46, S=32, O=16, H=1)	
iii) percentage by mass of water of crystallisation in the hydrated metal thios	sulphate,MS ₂ O ₃ .xH ₂ O.

PART II

Procedure

i) Weigh accurately, 1.0g of solid T into a clean beaker. Add about 150cm³ of water and stir well to dissolve. Transfer the solution to a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution HA5.

ii) Using a measuring cylinder, a 10cm ³ of the 10% potassium titrate the liberated Iodine w 1cm ³ of starch indicator and c titration until you obtain cons	iodide solution follo ith HA2 from the b continue the titration	owed by 10cm ³ of the urette until the solution until the solution just	2M sulphuric acid and then on is pale yellow; then add turns colourless.Repeat the
Mass of con	ntainer + T		g
Mass of co	ntainer alone		g
	lid T		g
Table II	T		
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of HA2 used(cm ³)			
Questions c) Determine the: i) number of moles of IO ₃ ⁻ ions		A5.	
ii)mass of pure potassium ioda potassium iodate sample used	te in the 250cm ³ of 1	HA5and hence the perc	centage purity of the

Experiment 4.4.2.4

You are provided with the following:

FA1 which contains 1.8g of potassium dichromate(VI) in 500cm³ of solution.

FA2 which ishydrogen peroxide solution

FA3 which issodium thiosulphate-5-water

FA4 which is 10% potassium iodide solution

1.5M sulphuric acid

You are required to determine the:

i) concentration of sodium thiosulphate in grams per litre in FA3.

ii)volume strength of the hydrogen peroxide solution in FA2.

Theory

In acidic medium, dichromate(VI) ions and hydrogen peroxide react with iodide ions as shown by the equations below.

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6I^-(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1) + 3I_2(aq) + H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2H_2O(1)$$

Procedure I

Pipette 20 or 25cm³ of FA1 into a clean conical flask. Add an equal volume of FA4 followed by 30cm³ of 1.5M sulphuric acid using a measuring cylinder and titrate with FA3 from the burette until the solution turns pale yellow; add 1cm³ of starch indicator and continue the titration until the blue-black starchiodine complex turns pale blue.

Table I

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA3 used(cm ³)		

Values used to calculate average	.cm ³
Average volume of FA3 used	.cm ³
i) Determine the molar concentration of: i) potassium dichromate(VI) in FA1.	

A Simplified Approach to A' Level Chemistry Practicals ii) sodium thiosulphate in FA3. Procedure II Using a measuring cylinder, measure and transfer 100cm³ of FA3 into a clean beaker. Add 100cm³ of distilled water, shake well to mix and label the solution FA5. Pipette 20 or 25cm³ of FA2 into a clean conical flask. Add an equal volume of FA4 followed by 30cm³ of 1.5M Sulphuric acid using a measuring cylinder. Leave the mixture to settle for 12 minutes and then titrate with FA5 from the burette as you shake the conical flask and its contents vigorously until the solution turns pale yellow; add 1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex turns colourless. Table II Final burette reading (cm³) Initial burette reading (cm³) Volume of FA5 used(cm³) b) Calculate the: i) molar concentration of sodium thiosulphate in FA5.

ii) molar concentation of hydrogen peroxide in the FA2 solution.	
	•••••
	•••••
iii) volume strength of hydrogen peroxide in the FA2 solution. (NB: Volume strength is the volume of oxygen gas liberated by 1cm³ of hydrogen peroxide solution; 1 mole of a gas occupies 24dm³ at room temperature)	ide

Experiment 4.4.2.5

You are provided with the following:

FA1 which contains 19.84g of sodium thiosulphate-5-water in one litre of solution.

FA2 which is 10% potassium iodide solution

FA3 which is 2M sulphuric acid

Solution Bwhich is Jik solution [a solution of a bleaching agent that contains hypochlorite/chloric(I) ions] *You are required to determinethe:*

- i) concentration of sodium thiosulphate in FA1in moldm⁻³.
- ii) percentage by mass of aqueous chlorine in solution B.

Theory

Solutions of bleaching agents such as Jik are prepared by bubbling chlorine gas through a cold dilute solution of sodium hydroxide. Sodium chloride, sodium hypochlorite and water are formed according to the following equation.

$$Cl_2(g) + 2NaOH(aq) \rightarrow NaCl(aq) + NaOCl(aq) + H_2O(l)$$

Addition of a dilute acid to a solution of such a bleaching agent liberates aqueous chlorine according to the equation below.

$$C\Gamma(aq) + OC\Gamma(aq) + 2H^{+}(aq) \rightarrow Cl_{2}(aq) + H_{2}O(l)$$

Since chlorine is more reactive than iodine, the aqueous chlorine has the ability to displace iodide ions from the salt potassium iodide, forming aqueous iodine as shown below.

$$Cl_2(aq) + 2I^-(aq) \rightarrow 2CI^- + I_2(aq)$$

The aqueous iodine formed can thus be titrated against standard sodium thiosulphate solution in accordance with the equation below.

$$I_2(aq) + 2S_2O_3^2(aq) \rightarrow 2I(aq) + S_4O_6^2(aq)$$

Procedure

- i) Using a suitable measuring cylinder, measure 20cm³ of solution B into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the resultant solution FA4.
- ii) Using a measuring cylinder, measure and transfer 25cm³ of FA4 into a clean conical flask. Using a measuring cylinder, add about 10cm³ of FA3 followed by 10cm³ of FA2. Titratethe liberated iodine with FA1 from the burette until the solution turns pale yellow; add 1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex just turns colourless. Repeat the titration until you obtain consistent results. Record your results in the table below.

Values used to calculate average
exerage volume of FA1 used
Determine the concentration of sodium thiosulphate in FA1 in moldm ⁻³ . (Na=23, S=32, O=16, H=1)
)Calculate the: i) number of moles of aqueous iodine liberated by 25cm ³ of FA4.

ii) massof aqueous chlorine in the 20cm ³ of solution B.(Cl=35.5)
ii) massor aqueous emornie in the zoem of solution B.(Cr 35.3)
iii) concentration of aqueous chlorine in solution B in gdm ⁻³ .
iv) percentage by mass of aqueous chlorine in solution B. (Density of solution B=1gcm ⁻³)

Experiment 4.4.2.6

You are provided with the following:

GA1 which is 10% potassium iodide solution.

GA2 which contains 8.68gof sodium thiosulphate in 500cm³ of solution.

2M sulphuric acid

Solid M which is bleaching powder (CaOCl₂).

You are required to determine the:

- i) molarity of sodium thiosulphate in GA1.
- ii) percentage by mass of available chlorine in the bleaching powder sample.

Theory

The bleaching owder can be dissolved in a specific volume of water and the mixture stirred to make a dilute solution of the calcium hypochlorite.

On addition of a dilute acid to the calcium hypochlorite solution, aqueous chlorine is liberated from the calcium hypochlorite, CaOCl₂according to the equation below.

$$CaOCl_2(aq) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + Cl_2(aq) + H_2O(l)$$

Since chlorine is more reactive than iodine, the aqueous chlorine has the ability adisplace iodide ions from its salt, forming aqueous iodine as shown below.

$$Cl_2(aq) + 2I^-(aq) \rightarrow 2CI^- + I_2(aq)$$

The aqueous iodine formed can then be titrated against standard sodium thiosulphate solution in according to the equation below.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

Procedure

Weigh accurately, 1.1g of solid M into a beaker. Add 100cm³ of water and transfer the resultant solution into a 250cm³ volumetric flask. Label the solution GA3.

Pipette 25.0 or 20.0cm³ of GA3 into a conical flask. Using a measuring cylinder, add 10cm³ of 2M sulphuric acid followed by 25cm³ of GA1 and titrate the liberated iodine with GA2 from the burette until the solution turns pale yellow. Add1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex just turns colourless. Repeat the titration until you obtain consistent results. Record your results in the table below.

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of GA2 used(cm ³)		

Values used to calculate average.	cm ³
Average volume of GA2 used	cm ³

b) C	alculate the molarity of sodium thiosulphate in GA2.
	(Na=23, S=32, O=16, H=1)
• • • • •	
• • • • •	
h)C	algulate the:
	alculate the:
j) number of moles of aqueous iodine liberated by 25.0 or 20.0cm ³ of GA3.
•	
i	i) mass of chlorine in the 250cm ³ of GA3.(Cl=35.5)
,	if mass ofemorme in the 250cm of G/15.(Cf 55.5)
•	
•	

iii) percentage by mass of available chlorine in solid M.
Experiment4.4.2.7
You are provided with the following:
FA1 which is sodium thiosulphate solution.
FA2 which is a solution containing 20.5g of a hydrated copper(II) salt, CuY.nH ₂ O per litre.
FA3 which is 10% potassium iodide solution
FA4 which is 1M sulphuric acid
Solid U which is potassium iodate You are required to determine the:
i) concentration of sodium thiosulphate in FA1in moldm ⁻³ .
ii) value of n in CuY.nH ₂ O and hence the percentage by mass, of water of crystallisation in the
hydrated copper(II) salt.
Theory
In acidic medium, iodate ions react with iodide ions according to the following equation.
$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow H_2O(l) + 3I_2(aq)$
Copper(II) ions react with iodide ions to form both copper(I) iodide and aqueous Iodine as shown by the
equation below.
$2Cu^{2+}(aq) + 4\Gamma(aq) \rightarrow Cu_2I_2(s) + I_2(aq)$
The liberated Iodine can then be titrated with sodium thiosulphate as shown by the equation below. $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$
Procedure I
(i) Weigh accurately, 1.0g of solid U into a clean beaker. Using a measuring cylinder, add about
100cm ³ of water and stir well to dissolve. Transfer into a 250cm ³ volumetric flask and make up to the mark with distilled water. Label the solution FA5.
Mass of container + Ug
Mass of container aloneg
Mass of solid Ug
(ii) Pipette 20 or 25cm ³ of FA5 into a clean conical flask. Using a measuring cylinder, add about 10cm ³

- (ii) Pipette 20 or 25cm³ of FA5 into a clean conical flask. Using a measuring cylinder, add about 10cm³ of FA4 followed by 10cm³ of FA3.
- (iii) Titrate the liberated Iodine with FA1 from the burette until the solution turns pale yellow; add 1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex just turns colourless.
- (iv) Repeat the titration until you obtain consistent results. Record your results in the table below.

	Capacity of p	pipette used		cm ³	
	Final burette reading (cm ³)				
	Initial burette reading (cm ³)				
	Volume of FA1 used(cm ³)				
					<u> </u>
	lues used to calculate average				
Av	erage volume of FA1 used				.cm ³
a)	Determine the concentration of p			39, I=127, O=16)	
b) (Calculate the concentration of the	sodium thiosulphate	in FA1in moldm ⁻³		
••••					
• • • •					
• • • •					• • • • • • • • • • • • • • • • • • • •
••••					
••••					
Pro	ocedure II				
(i)	Pipette 20 or 25cm ³ of FA2 into a of FA3.	a clean conical flask.	Using a measuring	cylinder, add about 10	cm ³
(ii)	Titrate the liberated Iodine with I of starch indicator and continue to colourless.				
(iii)	Repeat the titration until you obta	ain consistent results	Record your results	in the table below.	

	Capacity	or pripette used.		cm ³	
F	inal burette reading (cm ³)				
Iı	nitial burette reading (cm ³)				
V	Volume of FA1 used(cm ³)				
Value	es used to calculate average				cm ³
Aver	age volume of FA1 used				cm ³
	ulate the: umber of moles of copper(II)io	ons in FA2 whic	h reacted with the	e iodide ions in FA3	s.
		•••••			
ii) c	oncentration of copper(II) ions	s in FA2 in mole	dm ⁻³ .		
		JU O and hance	the percentage by	w mass, of water of	crystallization in
) Dete	ermine the value of n in CuY.n	11120 and hence		,,	3
	ermine the value of n in CuY.n e hydrated copper(II) salt. (Cu		-	,,	J
			-		
			-		
			-		
			-		

Experiment 4.4.2.8

GA1 which is a solution that contains 5.58g of hydrated sodium thiosulphate, Na₂S₂O₃.5H₂O in 250cm³ of solution.

GA2 which is potassium manganate(VII) solution.

10% potassium iodide solution.

2M sulphuric acid.

Solid Z which is impure iron(II) oxalate, $Fe(CO_2)_2$.

You are required to determine the:

- (i) concentration of the potassium manganate(VII) solution in mol dm⁻³.
- (ii) percentage purity of theiron(II) oxalate sample.

Theory

Acidified manganate(VII) ions react with thiosulphate ions, iron(II) ions and oxalate ions according to the following equations.

$$2MnO_4^-(aq) + 16H^+(aq) + 10S_2O_3^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5S_4O_6^{2-}(aq)$$

 $MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l) + 5Fe^{3+}(aq)$
 $2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$

Procedure A

Pipette 25cm³ (or 20cm³) of GA2 into a conical flask. Add 15cm³ of 2.0M sulphuric acid followed by 15cm³ of 10% potassium iodide solution and titrate the solution with GA1 from the burette until the solution becomes pale yellow. Add 1cm³ of starch indicator and continue the titration until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of GA1 used(cm ³)		

Procedure B

i) Weigh accurately 1.5g of Z into a clean beaker. Add 100cm³ of 2.0M sulphuric acid and stir well to dissolve. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark by addition of more distilled water. Label the solution GA3.

· · · · · · · · · · · · · · · · · · ·	end point is reached. Repeat the titration until you obtain consistent II below.
•	
	+ Zg
	g
	re used
1 3 11	
Table II	
Final burette reading (cm ³)	
Initial burette reading (cm ³)	
Volume of GA2 used(cm ³)	
Titre values used to calculate verage	e
Average volume of GA2 used	cm ³
	nate(VII) in GA2. (Na=39, S=32, O=16)

(ii) moles of manganate(VII) ions that reacted with 25cm ³ (or 20cm ³) of GA3.				
(iii) moles of iron(II) ions in 25cm ³ (or 20cm ³) of GA3.				
(h) Determine the:				
(b) Determine the: (i) mass of iron(II) oxalate, FeC_2O_4 in $250cm^3$ of GA3. (Fe = 56, C=12, O=16)				
(b) Determine the: (i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(b) Determine the: (i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(b) Determine the: (i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(b) Determine the: (i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(b) Determine the: (i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16) (ii) percentage purity of the iron(II) oxalate sample.				
(i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				
(i) mass of iron(II) oxalate, FeC ₂ O ₄ in 250cm ³ of GA3. (Fe = 56, C=12, O=16)				

CHAPTER FIVE 5.0BACK TITRATION

5.1Introduction

Back titration is a technique in volumetric analysis in which the amount of a given substance is not obtained by direct titration. In back titration, a given substance (J), which is a standard solution that is in excess, is reacted with a small amount of another substance(K) to give a product(L) mixed with the unreacted substance (J). The unreacted substance J is then reacted with a standard solution of another substance (M) to give another product (N). A summary of the reactions above is shown below.

One of the reasons why this technique is referred to as back titration is because the calculations involved start with the number of moles of the reactants used in the final stages of the experiment followed by those of the reactants used in the initial stages of the experiment.

ILLUSTRATION

Experiment Procedure
INITIAL STAGES OF EXPERIMENTFINAL STAGES OF EXPERIMENT

Calculations

5.1.1 Stages followed in calculations of Back Titration

The stages will be explained basing on the summary of reactions shown above.

The calculations in back titration follow the following stages.

- The number of moles of the standard solution of substance Mare calculated basing on the volume of substance M used in the final stage of the titration.
- By use of the mole ratio of reaction between M and Unreacted J, the moles of unreacted J are calculated.
- The total number of moles available in the total volume of the standard solution of substance J used initially is then calculated basing on the volume of the standard solution of substance J used initially.
- The number of moles of substance J that reacted with substance K can then be calculated by subtracting the moles of unreacted J (which reacted with M) from the total number of moles in the total volume of the standard solution of substance J initially used in the reaction with substance K.

5.1.2Applications of Back Titration

Back titration can be applied in the following ways:

- Determination of the percentage purity of electropositive metals such as magnesium, zinc, iron e.t.c. basing on their reaction with a solution of a suitable standard acid used in excess.
- Analysis of materials containing calcium carbonate, for instance egg shells of different animals, limestone, e.t.c., plus analysis of other metal carbonates.
- Determination of concentrations of oxalates, iodides, chromates and alike, in a series of redox reactions plus so many other applications.

5.2 Worked out examples on Back Titration

Worked out example 5.2.1

You are provided with the following:

FA1 which is 0.4M hydrochloric acid

FA2 which is 0.05M sodium hydroxide

Solid P which is impure barium carbonate

You are required to determine the percentage purity of the barium carbonate sample used.

Procedure

Weigh accurately, 1.4g of P into a clean beaker. Using a measuring cylinder, add 50cm³ of water and stir to form a paste, followed by 100cm³ of FA1 and continue to stir until effervescence stops. Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 20 or 25cm³ of FA2 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA3 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Mass of container + P	
Mass of container alone	41.50. g
Mass of solid P	1.40. \dot \dot \dot \dot \dot \dot \dot \dot
Mass of solid P	25

Final burette reading (cm ³)	12.30	12.10	16.10
Initial burette reading (cm ³)	0.00	0.00	4.00
Volume of FA3 used(cm ³)	12.30	12.10	12.10
	<u> </u>	<u> </u>	. 0.7

Values used to calculate average $\frac{12.10}{2} = 12.10$ Average volume of FA3 used $\frac{12.10 + 12.10}{2} = 12.10$ $\frac{12.10 + 12.10}{2} = 12.10$

Questions

- a) Calculate the:
 - i) moles of sodium hydroxide in FA2 that reacted withhydrochloric acid in FA3 1000cm³ of FA2 contain 0.05moles of sodium hydroxide

$$25cm^3$$
 of FA2 contain $\left(\frac{0.05}{1000}x 25\right)$ mores of sodium hydroxide

=0.00125 meles of sodium hydroxide

ii) moles of excess hydrochloric acid in FA3 that reacted with sodium hydroxide in FA2.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

Moles of
$$HCl = (1xmoles of sodium hydroxide)$$

= (1×0.00125)
= 0.00125

iii)number of moles of excess hydrochloric acid in the 250cm³ of FA3.

12.10cm³ of FA3 contain 0.00125 moles of hydrochloric acid

250cm³ of FA3 contain
$$\left(\frac{0.000125}{12.10} \times 250\right)$$
 motes of hydrochloric acid $= 0.0258$ motes of hydrochloric acid

iv) number of moles of hydrochloric acid that reacted with barium carbonate.

1000cm³ of FA1 contain 0.4 moles of hydrochloric acid

$$100cm^3$$
 of FA1 contain $\left(\frac{0.4}{1000}x\ 100\right)$ moles of hydrochloric acid = 0.04 moles of hydrochloric acid

Moles of hydrochloric acid that reacted with barium carbonate = (0.04-0.0258)

= 0.0142 moles of hydrochloric acid

b) Determine the:

i) mass of pure barium carbonate that reacted with hydrochloric acid.

(Ba=137, C=12, O=16)

$$BaCO_3(aq) + 2HCl(aq) \rightarrow BaCl_2(aq) + H_2O(l) + CO_2(g)$$

Moles of pure $BaCO_3 = (\frac{1}{2}x \text{ moles of } HCl)$
 $= (\frac{1}{2}x 0.0142)$
 $= 0.0071$
Molar mass of $BaCO_3 = [(137x1) + (12x1) + (16x3)]g$

Molar mass of
$$BaCO_3 = [(137x1) + (12x1) + (16x3)]g$$

$$= (137 + 12 + 48) g$$

$$= 107 g$$

1 mole of barium carbonate weighs 197g 0.0071 moles of barium carbonate weigh (197x0.0071)g

ii) percentage purity of the barium carbonate sample.

Percentage purity =
$$\left(\frac{1.3987}{1.4} \times 100\right)\%$$

= 99.9 %

Worked out example 5.2.2

You are provided with the following:

GA1 which was made by dissolving 11.2g of potassium hydroxide in 200cm³ of solution.

GA3 which is a solution of hydrochloric acid

Solid Z which is impure zinc powder.

You are required to determine the molar concentration of hydrochloric acid in GA3 and the percentage of the impurity in the zinc powder provided.

Theory

Zinc powder reacts with excess hydrochloric acid according to the following equation.

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

PART I

Procedure

- i) Using a measuring cylinder, transfer 100cm³ of GA1 into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution GA2.
- ii) Pipette 20 or 25cm³ of GA2 into a clean conical flask. Add 2-3 drops of Methyl orange indicator and titrate with GA3 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Capacity of pipet	te used	25.	cm ³
Final burette reading (cm ³)	10.40	10.10	20.00
Initial burette reading (cm ³)	0.00	0.00	10.00
Volume of GA3 used (cm ³)	10.40	11.10	10.00

Values used to calculate average $10.10, 10.00 \dots \text{cm}^{3}$ Average volume of GA3 used $\left(\frac{10.10 + 10.00}{2}\right) = 10.05 \dots \text{cm}^{3}$

Questions:

- a) Determine the concentration of:
 - i) potassium hydroxide in GA2 in moldm⁻³

Molar mass of
$$KOH = [(39x1) + (16x1) + (1x1)] = 56g$$

56g of potassium hydroxide contain 1 mole

56g of potassium hydroxide contain I mole

11.2g of potassium hydroxide contain:
$$\left(\frac{1}{56} \times 11.2\right)$$
 moles

$$200cm^3$$
 of GA1 contain $\left(\frac{11.2}{56}\right)$ moles of potassium hydroxide

$$100cm^3$$
 of GA1 contain $\left(\frac{11.2 \times 100}{56 \times 200}\right)$ moles of potassium hydroxide = 0.1 moles of potassium hydroxide

250cm³ of GA2 contain 0.1 moles of potassium hydroxide

$$1000cm^3$$
 of GA2 contain $\left(\frac{0.1 \times 1000}{250}\right)$ moles of potassium hydroxide = 0.4 moldm⁻³

ii) hydrochloric acid in GA3 in moldm⁻³.

 1000cm^3 of GA2 contain 0.4 moles of potassium hydroxide 25cm^3 of GA2 contain $\left(\frac{0.4 \times 25}{1000}\right)$ moles of potassium hydroxide

$$KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$$

 $Moles\ of\ hydrochloric\ acid=(lxmoles\ of\ potassium\ hydroxide)$

$$= \left(\frac{1 \times 0.4 \times 25}{1000}\right)$$

$$= \left(\frac{0.4 \times 25}{1000}\right)$$

10.05cm³ of GA3 contain $\left(\frac{0.4 \times 25}{1000}\right)$ moles of hydrochloric acid

1000cm³ of GA3 contain
$$\left(\frac{0.4 \times 25}{1000 \times 10.05} \times 1000\right)$$
 moles of hydrochloric acid = **0.995 moldm**⁻³

PART II

Procedure

Weigh accurately 1.2 of solid Z and place it in a clean plastic beaker. Add 100cm³ of GA3 to solid Z and warm gently until the solid dissolves (until effervescence is over). Transfer the resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution GA4. Pipette 20 or 25cm³ of GA2 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with GA4 from the burette until the end point is reached. Record your results in the table below. Repeat the titration until you obtain consistent results.

Mass of container + Z	21.40. g
Mass of container alone	
Mass of solid Z	1.20g
Capacity of pipette used	$\dots 25 \dots \text{cm}^3$

Final burette reading (cm ³)	35.90	35.70	41.60
Initial burette reading (cm ³)	0.00	0.00	6.00
Volume of GA4 used (cm ³)	35.90	35.70	35.60

Ouestions

a) Calculate the:

i)moles of hydrochloric acid in GA4 that reacted with the Potassium hydroxide in GA2.

$$1000cm^3$$
 of GA2 contain 0.4 moles of potassium hydroxide
 $25cm^3$ of GA2 contain $\left(\frac{0.4}{1000} \times 25\right)$ moles of potassium hydroxide
 $KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$

Moles of hydrochloric acid = (1xmoles of potassium hydroxide)

$$= \left(\frac{1 \times 0.4 \times 25}{1000}\right)$$

$$= \left(\frac{0.4 \times 25}{1000}\right)$$

ii)moles of hydrochloric acid in GA3 that did not react with the zincmetal.

$$36.65cm^3$$
 of GA4 contain $\left(\frac{0.4 \times 25}{1000}\right)$ moles of hydrochloric acid $250cm^3$ of GA4 contain $\left(\frac{0.4 \times 25}{1000 \times 36.65} \times 250\right)$ moles of hydrochloric acid

=0.07metesofhydrochloric acid

iii)moles of hydrochloric acid that reacted with zinc metal.

$$100cm^3$$
 of GA3 contain $\left(\frac{0.995}{1000} \times 100\right)$ moles of hydrochloric acid =0.0995 moles of hydrochloric acid

Moles of hydrochloric acid that reacted with zinc metal =
$$(0.0995-0.07)$$

= 0.0295 moles

b) Determine the mass of zinc that reacted with Hydrochloric acid and hence the percentage of the impurity in the zinc sample provided.(Zn=65)

From the balanced equation,

Moles of zinc =
$$\frac{1}{2}x$$
 moles of hydrochloric acid
= $\left(\frac{1}{2} \times 0.0295\right)$
= 0.01475

1 mole of Zinc metal weighs 65g

0.01475 moles of Zinc metal weigh: (65x0.01475)

$$= 0.959g$$

$$= 0.96g$$

Mass of the impurity =
$$(1.20 - 0.96)g$$

0.014/3 moles of 2inc metal weigh:
$$(65 \times 0.014/3)g$$

 $= 0.959g$
 $\simeq 0.96g$
Mass of the impurity = $(1.20 - 0.96)g$
 $= 0.24g$
Percentage of the impurity = $(\frac{0.24}{1.20} \times 100)\%$
 $= 20\%$

Worked out example 5.2.3

You are provided with the following:

FA1 which is potassium manganate(VII) solution of unknown concentration.

FA2 which is a solution prepared by dissolving 5.4g of a metal persulphate, X₂S₂O₈ in 500cm³ of solution.

FA3 which is 2M sulphuric acid.

Solid Hwhich is iron(II) sulphateheptahydrate, FeSO₄.7H₂O.

You are required to determine the:

- (i) molarity of manganate(VII) in FA1.
- (ii) relative atomic mass of X in $X_2S_2O_8$.

Theory:

Persulphate ions react with excess iron(II) ions in accordance with the equation below:

$$S_2O_8^{2-}(aq) + 2Fe^{2+}(aq) \rightarrow 2SO_4^{2-}(aq) + 2Fe^{3+}(aq)$$

The unreacted iron(II) ions are titrated with acidified manganate(VII) ions in accordance with the equation below:

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(l)$$

Procedure I

Weigh accurately 4.2g of solid H and dissolve it in about 100cm³ of distilled water; then transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA4.

RESULTS

Mass of container + H	40.6	g
Mass of container alone	36.4	g
Mass of solid H.	4.2	g

Pipette 25 (or 20cm³) of FA4 into a conical flask. Add an equal volume of FA3 and titrate the mixture with FA1 from the burette. Repeat the titration until you obtain consistent results. Record your results in the table below.

Volume of pipette used

25.0	 	\dots cm 3

1:4:-114	
Initial burette raeding (cm 3) 0.00 2.00	0.00
Volume of FA1 used (cm 3) 15.70 15.60	15.60

Titre value to be used to calculate average volume of FA1

Average volume of FA1

$$\left(\frac{15.60 + 15.60}{2}\right) = 15.60 \text{ cm}^3$$

Ouestions

Determine the:

(i) number of moles of manganate(VII) ions that reacted with iron(II) ions.

Molar mass of FeSO₄, $7H_2O = (56x1) + (32x1) + (16x4) + (18x7) = 278g$

278g of $FeSO_4$.7 H_2O contain 1 mole

4.2g of FeSO₄.7H₂Ocontain
$$\left(\frac{1}{278} \times 4.2\right)$$
 moles

 $250cm^3$ of FA4 contain $\left(\frac{4.2}{278}\right)$ moles of Fe^{2+}

25cm³ of FA4 contain
$$\left(\frac{4.2 \times 25}{278 \times 250}\right)$$
 moles of Fe^{2+}

25cm³ of FA4 contain
$$\left(\frac{4.2 \times 25}{278 \times 250}\right)$$
 moles of Fe^{2+}

Moles of $MnO_4^- = \frac{1}{5} \times \left(\frac{4.2 \times 25}{278 \times 250}\right) = 3.02 \times 10^{-4}$

(ii) concentration of manganate(VII) ions in FA1 in mol dm⁻³.

25.60cm³ of FA1 contain $3.02x10^{-4}$ moles of MnO₄.

$$1000cm^{3} \text{ of } FA1 \text{ contain } \left(\frac{3.02x10-4}{25.60} \times 1000\right) \text{ motes of } MnO_{4}^{-}.$$

$$= 0.0118 \text{ mol } dm^{-3}$$

PROCEDURE II

By use of a measuring cylinder, measure and transfer 25cm³ of FA2 into a 250cm³ beaker followed by 75cm³ of FA4. Shake well and label the solution FA5.

Pipette 25 (or 20cm³) of FA5 into a conical flask. Add an equal volume of FA3. Titrate the mixure with FA1 from the burette. Repeat the titration until you obtain consistent results. Record your results in the table below.

Final burette raeding (cm ³)	10.60	12.50	10.50
Initial burette raeding (cm ³)	0.00	2.00	0.00
Volume of FA1 used (cm ³)	10.60	10.50	10.50

Titre value to be used to calculate average volume of FA1

Average volume of FA1

$$\left(\frac{10.50 + 10.50}{2}\right) = 10.50 \cdot \text{cm}^3$$

Ouestions

- (b) Calculate the number of moles of:
- (i) manganate(VII) ions that reacted with the excess Fe²⁺.

 $1000cm^3$ of FA1 contain 0.0118 moles of MnO_4 .

10.50 cm³ of FA1 contain
$$\left(\frac{0.0118}{1000} \times 10.50\right)$$
 motes of MnO_4^- .
=1.239x10⁻⁴ moles of MnO_4^-

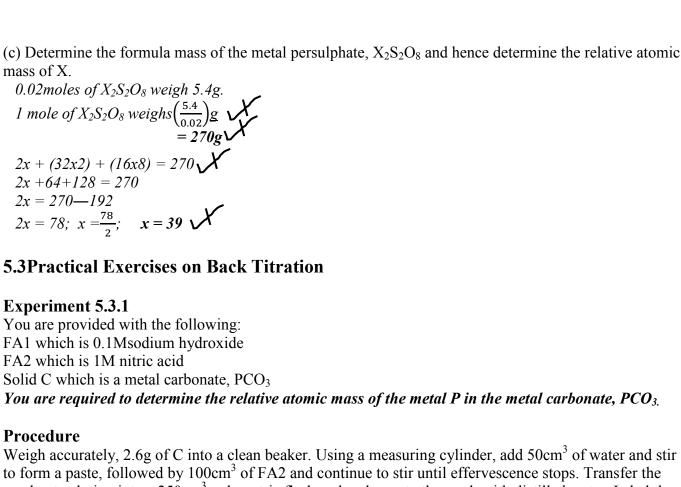
(ii) unreacted Fe²⁺ ions in 100cm³ of FA5.

Moles of
$$Fe^{2^+}$$
 that reacted with $MnO_4^- = (5xmoles \text{ of } MnO_4^-)$
 $= (5x1.239x10^{-4}) = (.195 x10^{-4})$
25.0cm³ of FA5 contain 6.195 x10⁻⁴ moles of Fe^{2^+}

25.0cm of FA5 contain
$$6.195 \times 10^{-4}$$
 moles of Fe²⁺

$$= 2.478 \times 10^{-3} \text{ moles of } Fe^{2+}$$

(iii) Fe²⁺ ions in FA4 that reacted with persulphate ions in FA2.


$$250cm^3$$
 of FA4 contain $\left(\frac{4.2}{278}\right)$ moles of Fe^{2+}

250cm³ of FA4 contain
$$\left(\frac{4.2}{278}\right)$$
 moles of Fe^{2+}
75cm³ of FA4 contain $\left(\frac{4.2}{278 \times 250} \times 75\right)$ moles of Fe^{2+}
= 4.53x10⁻³ moles of Fe^{2+}

Moles of Fe^{2+} ions in FA4 that reacted with persulphate ions in FA2 = $(4.53x10^{-3} - 2.478x10^{-3})$ = $2.054 x10^{-3}$ foles of Fe^{2+} ions (iv) moles of persulphate in 500cm³ of FA2. Moles of $S_2O_8^{2-}$ that reacted with $Fe^{2+} = (\frac{1}{2}x \text{ moles of } Fe^{2+}) = (\frac{1}{2}x 2.054 x10^{-3}) = 1.027x10^{-3}$

Moles of
$$S_2O_8^{2-}$$
 that reacted with $Fe^{2+} = (\frac{1}{2}x \text{ moles of } Fe^{2+}) = (\frac{1}{2}x 2.054 \times 10^{-3}) = 1.027 \times 10^{-3}$
25cm³ of FA2 contain 1.027x10⁻³ moles of $S_2O_8^{2-}$.

25cm of FA2 contain
$$(1.027x10^{-3} \times 500)$$
 moles of $S_2O_8^2$.
 $= 0.02054 = 0.02$ moles of $S_2O_8^2$.

resultant solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 20 or 25cm³ of FA1 into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA3 from the burette until the end point is reached. Repeat the titration until you obtain

consistent results. Record your results in the table below.
Mass of container + Cg
Mass of containerg
Mass of solid Cg
Capacity of pipette used
Final burette reading (cm ³)
Initial burette reading (cm ³)
Volume of FA3 used (cm ³)
Values used to calculate average
Average volume of FA3 used

Questions
a) Calculate the:
i) number of moles of excess nitric acid in FA3 that reacted with the sodium hydroxide in FA1.
ii) moles of nitric acid that did not react with PCO ₃ .
iv) number of moles of nitric acid that reacted with PCO ₃ .
b) Write the equation of reaction between the metal carbonate, PCO ₃ and nitric acid.
c) Determine the:
i)mass of one mole of the metal carbonate, PCO ₃ .

	al P in PCO ₃ .
Experiment 5.3.2 You are provided with the following: GA1 which is 0.1M potassium carbons GA2 which is 0.1M potassium hydrox GA3 which is approximately 1M sulples Golid D which is a metal oxide, XO You are required to determine the containe of X in XO.	xide solution
quation. $XO(s) + H_2SO_4(aq) \rightarrow D$ The excess, unreacted Sulphuric acid aquation.	nuric acid which is in excess in accordance with the following $XSO_4(aq) + H_2O(l)$ reacts with Potassium hydroxide in accordance with the following $A \to K_2SO_4(aq) + 2H_2O(aq)$
	, , , 11,2504(uq) . 211,20(uq)
PART I Procedure	
1 10 C 1 1 1 1 C	3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
 By use of a measuring cylinder, m solution in the beaker, add 100cm³ Pipette 20 or 25cm³ of GA1 into a 	neasure and transfer 20cm ³ of GA3 into a clean beaker. To the of distilled water. Label the solutionGA4. In clean conical flask. Add 2-3 drops of methyl orange indicator an until the end point is reached. Repeat the titration until you obtain sults in the table below.
By use of a measuring cylinder, m solution in the beaker, add 100cm ³ ii) Pipette 20 or 25cm ³ of GA1 into a titrate with GA4 from the burette u consistent results. Record your res	³ of distilled water. Label the solutionGA4. a clean conical flask. Add 2-3 drops of methyl orange indicator an until the end point is reached. Repeat the titration until you obtain
By use of a measuring cylinder, m solution in the beaker, add 100cm ³ ii) Pipette 20 or 25cm ³ of GA1 into a titrate with GA4 from the burette u consistent results. Record your res	of distilled water. Label the solutionGA4. clean conical flask. Add 2-3 drops of methyl orange indicator an until the end point is reached. Repeat the titration until you obtain sults in the table below.
By use of a measuring cylinder, m solution in the beaker, add 100cm ³ ii) Pipette 20 or 25cm ³ of GA1 into a titrate with GA4 from the burette the consistent results. Record your results are Capacity of pipetters.	of distilled water. Label the solutionGA4. clean conical flask. Add 2-3 drops of methyl orange indicator an until the end point is reached. Repeat the titration until you obtain sults in the table below.

Questio	ons			
a) Calcu				
i) nur	nber of moles of sulphuric aci	d in the 120cm ³ of GA	A4.	
•••••				
ii) co	ncentration of sulphuric acid	in GA3 in moles per l	itre.	
•••••				
•••••				• • • • • • • • • • • • • • • • • • • •
stir v (ii) Cool	gh accurately 3.0g of solid D well to dissolve (you may war and transfer the resultant solulled water. Label the solution	rm gently as you stir to ation into a 250cm ³ vo	o dissolve if necessar	y).
	Mass of container	+ D		g
	Mass of container			g
titrat	tte 20 or 25cm ³ of GA2 into a e with GA5 from the burette eat the titration until you obta	a clean conical flask. A until the end point is i	Add 2-3 drops of metal reached.	nyl orange indicator and
	Capacity of pipette	used		cm ³
F	inal burette reading (cm ³)			
Ir	nitial burette reading (cm ³)			
	olume of GA5 used (cm ³)			
Values ı	used to calculate average			cm ³

Average volume of GA5 used	cm ²
b) Calculate the number of moles of sulphuric acid which:i) did not react with the metal oxide, XO.	
ii) reacted with the metal oxide, XO.	
c) Determine the: i) number of moles of the metal oxide, XO that reacted with these	alphuric acid in GA3.
ii) molar mass of the metal oxide and hence the value of X in XO). (O=16)

	• .	_	1	3
HX	periment	•	•	•
LA		\mathbf{J}	·	••

You are provided with the following:

HA1 which is a solution of hydrochloric acid whose concentration is approximately 0.5M.

HA2 which was made by dissolving 18.63g of potassium carbonate in water to make 500cm³ of solution.

HA3 which is 0.1 M potassium hydroxide solution.

Substance Q which is a magnesium ribbon.

You are required to determine the:

- i) concentration of hydrochloric acid in HA1 in moldm⁻³.
- ii) percentage purity of the magnesium ribbon provided.
- iii) mass of pure magnesium per unit length of the ribbon.

Theory

The Magnesium ribbon provided reacts with excess hydrochloric acid according to the following equation.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Potassium reacts with the excess unreacted hydrochloric acid according to the equation below.

$$KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$$

Procedure I

Pipette 20 or 25cm³ of HA2 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with HA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Values used to calculate average.	cm ³
Average volume of HA1 used	cm ³
Questions a) Calculate the number of moles of potassium carbonate in HA2 that reacted with the hydrochlor	ric acid
in HA1.	

c) l	Determine the concentration of hydrochlo	ric acid in HA1 in n	noldm ⁻³ .	
i) N ii) l iii) ther into iv) titra	Measure and break off a portion of substant Determine the mass of the ten- centimetre. Break the ten- centimetre-long substance in add 100cm ³ of HA1 and stir until the pion a 250cm ³ volumetric flask and make up Pipette 20 or 25cm ³ of HA3 into a clean atte with HA4 from the burette until the ensistent results. Record your results in the	nce Q which is exacted one of Q substance Q. e Q into 4 small partices of Q complete to the mark with disconical flask. Add 2 and point is reached.	etly 10cm long. Is and place them in a clean ply dissolve. Transfer the resustilled water. Label this soluted a drops of Methyl orangeing	lastic beaker Iltant solution tion HA4. dicator and
	Mass of container + Q.		σ	
	Mass of container alon		_	
	Mass of solid Q		Č	
			cm ³	
	Final burette reading (cm ³)			
	Initial burette reading (cm ³)			
	Volume of HA4 used (cm ³)			
Va	alues used to calculate average			cm ³
Av	verage volume of HA4 used			\dots cm ³
	Questions Calculate the moles of hydrochloric acid i) in HA4 that reacted with the potassium		J.	
			•••••	

	ii) in HA1 that did not react with the magnesium.
	iii) in HA1 that reacted with the magnesium.
1/	Determine the
u)	Determine the: i) mass of pure magnesiumthat reacted with the hydrochloric acid in HA1.
	ii) percentage purity of the magnesium ribbon provided.
	iii) mass of pure magnesium per unit length of the ribbon provided

Experiment 5.3.4

You are provided with the following:

FA1 which is a solution containing 1.18g of manganate(VII) ions in 500cm³ of solution

FA2 which is a solution of oxalic acid.

FA3 which is 1M sulphuric acid

Solid E which is impure manganese(IV) oxide, MnO₂ referred to as *pyrolusite*.

You are required to determine the:

- i) molarity of manganate(VII) ions in FA1
- ii) percentage of the impurity in the manganese(IV) oxide sample used. (Mn=55, O=16)

Theory

The oxalate ions from Oxalic acid react separately with manganate(VII) ions and manganese(IV) oxide in the pyrolusite according to the following equations:

$$2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

 $MnO_2(s) + 4H^+(aq) + C_2O_4^{2-}(aq) \rightarrow Mn^{2+}(aq) + 2H_2O(l) + 2CO_2(g)$

Procedure I

By use of a measuring cylinder, measure and transfer 50cm³ of FA2 into a clean beaker. Add 75cm³ of distilled water and label the solution FA4

Pipette 20 or 25cm³ of FA4 into a clean conical flask. Add an equal volume of FA3 and heat the mixture to a temperature of about 70°C and immediately titrate the hot solution with FA1 from the burette. Repeat the titration until you obtain consistent results. Record your results in the table below.

Values used to calculate average.	cm ³
Average volume of FA1used.	cm ³
a) Calculate the molarity of MnO ₄ in FA1.	

b) Determine the molarity of C ₂ O ₄ ²	²⁻ in FA2.		
Procedure II Weigh accurately, 1.0g of solid E a measure and add 150cm ³ of FA2 for Boil the mixture gently for about 5 mixture and transfer it into a 250cm Label the solution FA5. Measure and transfer 50cm ³ of FA label this solution FA6. Pipette 20 or 25cm ³ of FA5 into a contraction of FA5 into a	to 6 minutes (until the m ³ volumetric flask and 1 and transfer into a cluden conical flask. Additional flask.	A3 to the solid in the content of the content of the mark of the m	eles turn brown). Cool the with distilled water. 3 of distilled water and 5A3 by use of a
measuring cylinder and heat the mi from the burette. Repeat the titration	ixture to about 70°C ar	nd immediately titrate t	he hot solution with FA6
below. Mass of contain	iner + E		g
Mass of contain	iner alone		g
Mass of solid	E		g
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of FA6 used(cm ³)			
Values used to calculate average.			cm ³
Average volume of FA6 used			

*	te the number of moles of: O_4^- in FA6 that reacted with $C_2O_4^{-2-}$ in FA5.
•••••	
•••••	
ii) C ₂ (O_4^{2-} in FA5 that reacted with MnO ₄ in FA6.
• • • • • • • • • • • • • • • • • • • •	
iii) C ₂	O_4^{2-} in FA2 that reacted with the MnO ₂ .
iv) M	nO_2 that reacted with the $C_2O_4^{2-}$ in FA2.
v) Det	ermine the percentage of the impurity in the sample of manganese(IV) oxide, MnO ₂ used.
•••••	
• • • • • • • •	

Experiment5.3.5

You are provided with the following:

GA1 which is iodine solution

GA2 which is a solution containing 9.3g of hydratedsodium thiosulphate, Na₂S₂O₃.5H₂O in 500cm³. Solid P isanhydrous sodium sulphite, Na₂SO₃.

You are required to determine the:

- i) molarity of iodine in GA1.
- ii) percentage impurity of the sodium sulphite sample.

Theory

Sulphite ions are oxidised by iodine to sulphate ions according to the equation below:

$$SO_3^{2-}(aq) + H_2O(l) + I_2(aq) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2I^-(aq) \dots (i)$$

Since the hydrogen ions produced by the reaction above are capable of reacting with thiosulphate ions resulting in precipitation of sulphur, before titration with standard sodium thiosulphate, some sodium hydrogencarbonate(about 2g) is added to the solution in the conical flask so as to **remove all the hydrogen ions from the solution** as shown by the reaction below.

$$2HCO_3(aq) + 2H^+(aq) \rightarrow 2CO_2(aq) + 2H_2O(l)$$
(ii)

When equations (i) and (ii) above are combined, the overall equation below is obtained. $SO_3^{2-}(aq) + I_2(aq) + 2HCO_3^{-}(aq) \rightarrow SO_4^{2-}(aq) + 2I(aq) + 2CO_2(aq) + H_2O(l)$

Hence sulphite ions are oxidized by aqueous Iodine to sulphate ions in the presence of hydrogencarbonate ions according to the aboveoverall equation.

Procedure I

Pipette 10cm³ of GA1 into a clean conical flask and titrate the solution with GA2 until the solution becomes pale yellow; then add 5 drops of Starch indicator and continue the titration until the blue-black starch-iodine complex just turns colourless. Repeat the titration until you obtain consistent results. Record your results in table I below.

Table I

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of GA2 used(cm ³)		

Q	uestions
a)	Write the equation of reaction between iodine and thiosulphate ions.
b)	Calculate the molarity of the:
	i) sodium thiosulphate in GA2
	ii) iodine in GA1

Procedure II

- i) Weigh accurately, 1.0g of P into a clean beaker. Add about 100cm³ of water and stir well to dissolve. Transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the resultant solution GA3.
- ii) Using a glass measuring cylinder, measure and transfer 70cm³ of GA1 into a clean conical flask. While shaking the conical flask and its contents, by use of another measuring cylinder add slowly, 30cm^3 of GA3 followed by 2.0g of sodium hydrogenearbonate and shake well to dissolve. Label the resultant solution GA4.
- iii) Pipette 20 or 25cm³ of GA4 into a clean conical flask and titrate with GA2 until the solution turns pale yellow, then add 1cm³ of Starch indicator and continue the titration until the blue-black complex just turns colourless. Repeat the titration until you obtain consistent results. Record your results in table II below.

Mass of container + P	g
Mass of container	g
Mass of solid P	g
Table II	
Final burette reading (cm ³)	
Initial burette reading (cm ³)	
Volume of GA2 used(cm ³)	
	<u> </u>
alues used to calculate average	
ardes used to carculate average	
verage volume of GA2 used	
	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.
	cted with sulphite ions in GA3.
Calculate the number of moles of iodine in GA1 that rea	cted with sulphite ions in GA3.

	A Simple	ified Approach to A' L	evel Chemistry Prac	ticals	
	ii) 250cm ³ of GA3 and hence the	he percentage impurity	of the sodium sulphi	te sample used in the	
	preparation of GA3.		•	•	
					• • •
o] o] o,	2 which is a solution containing id R which is a reducing agent. id S which is sodium hydrogence are required to determine the: molarity of iodine in FA1 mole ratio for the reaction bet	arbonate.	•	2020 J.C 1120 III 011 0 III	
	eory ine reacts with thiosulphate ions $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow S_4O_6$		tion below:		
ip ec ta	pette 10cm ³ of FA1 into a clean comes pale yellow; then add 5 drach-iodine complex just turns collected your results in table I below	ops of starch indicator ourless. Repeat the tital	and continue the titra	tion until the blue-bla	ck
	Capacity of	pipette used		cm ³	
	Table I	. 1			
	Final burette reading (cm ³)				
	Initial burette reading (cm ³)				
	Volume of FA2 used(cm ³)				

Values used to calculate average			cm ³
Average volume of FA2 used			cm ³
Questions			
a) Calculate the number of moles	of thiosulphate ions in	FA2 that reacted with	iodine in FA1.
b) Determine the concentration of	iodine in FA1 in mold	m ⁻³ .	
Procedure II i) Weigh accurately, 1.5g of R into Transfer the solution into a 250cm	o a clean beaker. Add a volumetric flask and	about 100cm ³ of water make up to the mark v	and stir well to dissolve. with distilled water. Label
the resultant solution FA3.			
ii) Using a measuring cylinder, measure and transfer 10cm ³ of FA3 into a clean conical flask. Add 25cm ³ of FA1 followed by 2.0g of solid S and shake to mix well. Titrate the excess iodine in the			
mixture with FA2 until the solution titration until the blue-black starch			
obtain consistent results. Record y			the mation until you
Mass of contain	ner + R		œ.
	ier i K		
			_
	.		g
Table II Final burette reading (cm ³)			T
Initial burette reading (cm ³)			
Volume of FA2 used(cm ³)			
volume of FA2 used(cm)			

Value	es used to calculate average	cm ³
Aver	age volume of FA2 used	cm ²
	lculate the number of moles of:) excess iodine from FA1 that reacted with thiosulphate ions from FA2.	
		.
	ii) iodine that reacted with solid R.	· • • •
		.
		,
d) De	etermine the:	
	i)number of moles of R that reacted with iodine (molar mass of R is 126g).	
		• • •
		•••
		•••
	ii) mole ratio of reaction between iodine and R.	
		• • •
		• • •
		•••
		•••
		• • •

	• .	– 3	_
HX	periment	^ •	1
LA		J.J.	, ,

You are provided with the following:

GA1 which is a solution containing manganate(VII) ions.

GA2 which is a solution containing 2.64g of an impure metal persulphate, $M_2S_2O_8$ in 200cm³ of solution.

GA3 which is 2.0M sulphuric acid.

Solid Pwhich isdiammoniumiron(II) sulphate hexahydrate, (NH₄)₂SO₄FeSO₄.6H₂O.

You are required to determine the:

- (i) molar concentration of manganate(VII) ions in GA1.
- (ii) percentage purity of the sample of the metal persulphate, $M_2S_2O_8$.

Theory:

Persulphate ions react with excess iron(II) ions according to the equation below:

$$S_2O_8^{2-}(aq) + 2Fe^{2+}(aq) \rightarrow 2SO_4^{2-}(aq) + 2Fe^{3+}(aq)$$

The unreacted iron(II) ions are titrated with acidified manganate(VII) ions according to the equation below:

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(l)$$

Procedure I

Weigh accurately 6.3g of solid P and dissolve it in about 100cm³ of distilled water. Transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution GA4.

RESULTS

Mass of container + P	.g
Mass of container alone	.g
Mass of solid P	2

Pipette 25 (or 20cm³) of GA4 into a conical flask. Add an equal volume of GA3 and titrate the mixture with GA1 from the burette. Repeat the titration until you obtain consistent results. Record your results in the table below.

Final burette reading (cm ³)		
Initial burette raeding (cm ³)		
Volume of GA1 used (cm ³)		

Average volume of GA1cm

Quest	ions
Deterr	mine the molar concentration of: +ions in GA4.
(1) Fe ²	Tions in GA4.
(ii) ma	anganate(VII) ions in GA1.

PROCEDURE II

- i) Using a measuring cylinder, measure and transfer 15cm³ of GA2 into a 250cm³ beaker followed by 85cm³ of GA4. Shake well and label the solution GA5.
- ii) Pipette 25 (or 20cm³) of GA5 into a conical flask. Add an equal volume of GA3. Titrate the mixure with GA1 from the burette. Repeat the titration until you obtain consistent results. Record your results in the table below.

Volume of pipette used			cm ³
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of GA1 used (cm ³)			
Titre value to be used to calculate	average volume of G	A1	cm ³
Average volume of GA1			cm ³
Questions (b) Calculate the number of moles (i) manganate(VII) ions that rea	of: acted with the excess	Fe ²⁺ in GA5.	
(ii) Fe ²⁺ ions which did not reac	et with the persulphat	e ions.	
(iii) Fe ²⁺ ions in FA4 that reacte	ed with persulphate ic	ons in GA2.	

A Simplified Approach to A' Level Chemistry Practicals
(iv) moles of the persulphate ions in 200cm ³ of GA2.
(1V) moles of the persulphate ions in 200cm of 0712.
(c) Determine the mass of the metal persulphate, M ₂ S ₂ O ₈ in 200cm ³ of GA2and hence calculate the
percentage purity of the metal persulphate. (M=39, S=32, O=16)

CHAPTER SIX 6.0 SOLUBILITY PRODUCT

6.1 Introduction

Solubility product is the product of the molar concentrations of the constituent ions of a sparingly soluble salt or electrolyte that existin its saturated solution raised to their respective powers at a fixed temperature.

A sparingly soluble salt is one which dissolves up to a certain extent beyond which it cannot dissolve. At this point, equilibrium is established between the undissolved salt and the ions formed by the portion of the salt that dissolved.

In general, for any sparingly soluble ionic salt expressed as M_aX_b , its equation of solubility is expressed as shown below:

$$M_aX_b(s)+(aq) \rightleftharpoons aM^{b+}(aq)+bX^{a-}(aq)$$

OR:
$$M_a X_b(s) \rightleftharpoons a M^{b+}(aq) + b X^{a-}(aq)$$

The expression for the solubility product is:

$$K_{sp} = [M^{b+}]^a [X^{a-}]^b$$

For silver chloride, its equation of solubility is:

$$AgCl(s) + (aq) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

Its expression for the solubility productis:

$$K_{sp} = [Ag^+][Cl^-]$$

For lead(II) chloride, its equation of solubility is:

$$PbCl_2(s) + (aq) \rightleftharpoons Pb^{2+}(aq) + 2Cl^{-}(aq)$$

Its expression for the solubility productis:

$$K_{sp} = [Pb^{2+}][Cl^{-}]^2$$

6.2 Worked out examples on the Solubility Product

Workedout example 6.2.1

You are provided with the following:

FA1 which is 0.08M hydrochloric acid

Solid M which is calcium hydroxide

You are required to determine the solubility product, K_{sp} of calcium hydroxide at room temperature.

Theory

Calcim hydroxide is sparingly soluble in water as shown by the following equation:

$$Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq)$$

But Solubility of Ca(OH)₂ =
$$\int Ca^{2+} \int = \frac{1}{2} \int OH^{-} \int$$

$$K_{sp} = [Ca^{2+}][OH^{-}]^{2}$$

When the mixture is titrated with an appropriate acid such as hydrochloric acid, the concentration of hydroxyl ions, OH can be determined basing on the following equation.

$$OH^-(aq) + HCl(aq) \rightarrow H_2O(l) + Cl^-(aq)$$

Ionic equation

$$OH^-(aq) + H^+(aq) \rightarrow H_2O(l)$$

Procedure

- i) Weigh accurately 2.3g of solid M from a piece of paper and transfer it carefully into a 250cm³ volumetric flask. Add 170cm³ of distilled water. Stopper/cork the flask immediately and shake vigorously for 8-10 minutes and then filter the mixture into a clean conical flask.
- ii) Pipette 20 or 25cm³ of the filtrate into another clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA1 until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Final burette reading (cm ³)	13.90	13.70	21.60
Initial burette reading (cm ³)	0.00	0.00	8.00
Volume of FA1 used (cm ³)	13.90	13.70	13.60

Values used to calculate average. 13.70, 13.60.Average volume of FA1 used. $\left(\frac{13.70 + 13.60}{2}\right) = 13.65.$

Ouestions

- a) Calculate the:
 - i) number of moles of hydrochloric acid in FA1 that reacted.

1000cm³ of FA1 contain 0.08 moles of hydrochloric acid

13.65cm³ of FA1 contain
$$\left(\frac{0.08}{1000} \times 13.65\right)$$
 wholes of hydrochloric acid =0.001092 males of hydrochloric acid

ii) concentration of hydroxyl ions in moldm⁻³.

Moles of hydroxyl ions =(lxmoles of the acid)

$$= (1x0.001092)$$

$$= 0.001092$$

25cm³ of the filtrate contained 0.001092 moles of hydroxyl ions

1000cm³ of the filtrate contain
$$\left(\frac{0.001092}{25} \times 1000\right)$$
 woles of hydroxyl ions.
= **0.0437moldm**⁻³

- b) Determine the:
 - i) solubility of calcium hydroxide in $moldm^{-3}$ (Ca = 40,O=16, H=1).

Solubility of
$$Ca(OH)_2 = [Ca^{2^+}] = \frac{1}{2} [OH^-]$$

= $(\frac{1}{2} \times 0.0437) = 0.022 \text{ moldm}^{-1}$

ii) solubility product, K_{sp} of calcium hydroxide

$$K_{sp} = [Ca^{2+}][OH^{-}]^{2}$$

= $[0.022 moldm^{-3}x (0.0437 moldm^{-3})^{2}] = 4.2x10^{-5} mol^{3} dm^{-9}$

c) Determine the percentage of calcium hydroxide that dissolved in water.

(Ca=40, O=16, H=1)

Molar Mass of
$$Ca(OH)_2 = [(40x1) + (16x2) + (1x2)]g$$

$$= (40+32+2)g$$

$$= 74g$$
1 mole of $Ca(OH)_2$ weighs 74g
0.022 moles of $Ca(OH)_2$ weighs (74x0.022)g
$$= 1.628g$$
Percentage of $Ca(OH)_2$ that dissolved $\left(\frac{1.628}{2.3} \times 100\right)\%$

$$= 70.78\%$$

6.3 Practical Exercises on the Solubility Product

Experiment 6.3.1

You are provided with the following:

FA1 which is 0.05M nitric acid

Solid H which is a metal hydroxide, M(OH)₂

You are required to determine the percentage of the metal hydroxide that dissolved in water and its solubility product, K_{sp} at room temperature.

Theory

The metal hydroxide is sparingly soluble in water as shown by the following equation:

$$M(OH)_2(s) \rightleftharpoons M^{2+}(aq) + 2OH^{-}(aq)$$

But solubility of M(OH)₂ =
$$[M^{2^+}] = \frac{1}{2}[OH^-]$$

$$\therefore Ksp = [M^{2^+}][OH^-]^2$$

When the mixture is titrated with an appropriate acid such as nitric acid, the concentration of hydroxyl ions, OH⁻ can be determined basing on the following equation.

$$OH^-(aq) + HNO_3(aq) \rightarrow H_2O(l) + NO_3^-(aq)$$

Procedure

- i) Weigh accurately 2.5g of solid H and transfer it carefully into a 250cm³ volumetric flask. Add 170cm³ of distilled water. Stopper/cork the flask immediately and shake vigorously for 8—10 minutes and then filter the mixture into a clean conical flask.
- ii) Pipette 20 or 25cm³ of the filtrate into another clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with FA1 until the end point is reached. Repeat the titration until you obtain consistent tresults. Record your results in the table below.

	Capacity of pip	bette used			cm ³
	Final burette reading (cm ³)				
	Initial burette reading (cm ³)				
	Volume of FA1 used (cm ³)				
Val	ues used to calculate average				cm ³
Av	erage volume of FA1 used				cm ³
a) V	estions Write an ionic equation for th filtrate.	e reaction bef	tween nitric ac	id and the hydro	oxyl ions in the pipetted
b)	Calculate the: i) number of moles of nitric	acid in FA1 tl			
	ii) concentration of hydroxy	l ions in mold	m^{-3} .		
c)	Determine the: i) solubility of the metal hydrogeneous control of the meta	droxide in mol	dm ⁻³		

ii) percentage of the metal hydroxide that dissolved in water (M=40, O=16, H=1).
iii) Solubility product, K_{sp} of the metal hydroxide, $M(OH)_2$. (Indicate its units).

Experiment 6.3.2

You are provided with the following:

GA1 is 0.4M potassium iodide solution

GA2 which is a solution containing 14.9g of sodium thiosulphate pentahydrate, Na₂S₂O_{3•}5H₂O dissolved in water to make 500cm³ of solution.

GA3 which is 2M sulphuric acid

Solid W which is calcium iodate, Ca(IO₃)₂.

You are required to determine the percentage of calcium iodate that dissolved in water and the solubility of the salt at room temperature.

Theory

Calcim iodate is sparingly soluble in water as shown by the following equation:

$$Ca(IO_3)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2IO_3^{-}(aq)$$

But Solubility of Ca(IO₃)₂= $[Ca^{2+}] = \frac{1}{2}[IO_3^{-}]$

$$K_{sp} = [Ca^{2+}][IO_3^{-}]^2$$

 $K_{sp} = \frac{1}{2}[IO_3^{-}][IO_3^{-}]^2$

The iodate ions in the presence of an acid, oxidize iodide ions to aqueous iodine according to the equation below.

$$IO_3^-(aq) + 6H^+(aq) + 5I^-(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$$

The aqueous iodine formed is then titrated with a standard solution of thiosulphate ions.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

P	ro	ce	di	111	re

- i) Weigh accurately 1.2g of solid W and transfer it carefully into a 250cm³ volumetric flask. Add 150cm³ of distilled water and shake well to mix; then add more distilled water and make up to the mark. Label the solution GA4.
- ii) Using a measuring cylinder, measure and transfer 15cm³ of GA4 into a clean conical flask. Add 15cm³ of GA1 followed by 15cm³ of GA3 and shake well to mix and titrate the mixture with GA2 until the solution turns pale yellow. Add 1cm³ of starch indicator and continue the titration until the blue-black starch-iodine complex just turns colourless. Repeat the titration until you obtain consistent results. Record your results in the table below.

Mass of beaker + solid Wg					
Mass of beaker aloneg					
Mass of solid W			g		
Volume of pipette use	ed		cm ³		
Final burette reading (cm ³)					
Initial burette reading (cm ³)					
Volume of GA2 used (cm ³)					
Values used to calculate average				m ³	
Average volume of GA2 usedcm ³					
ii) IO ₃ in GA4.				•••••	

A Simplified Approach to A' Level Chemistry Practicals					
b) Determine the:					
i) solubility of calcium iodate in moldm ⁻³ .					
ii) percentage of calcium iodate that dissolved in water.(Ca= 40, I=127, O=16).					

CHAPTER SEVEN 7.0 THE PARTITION COEFFICIENT (DISTRIBUTION CONSTANT)

7.1 Introduction

The partition coefficientis the ratio of the equilibrium concentration of a solute in one solvent to the equilibrium concentration of the same solute in another solvent provided the two solvents are immiscible and the solute remains in the same molecular state in both solvents at a particular temperature.

Partition coefficient,
$$K_D = [\underline{solute}]_{\underline{solvent \ 1}}$$

 $[\underline{solute}]_{\underline{solvent \ 2}}$

Note: The partition coefficient, K_D derives its name from the Partition Law (Distribution Law).

The Partition Law (Distribution Law) states that:

At constant temperature, a solute distributes itself between two immiscible liquids which are in contact in such a way that the ratio of the concentration of the solute in the two liquids is constant at equilibrium provided the solute remains in the same molecular state.

The Partition Law has got some limitations and they include the following:

- The temperature must be kept constant.
- The solute must be miscible with both solvents.
- The solute must not associate or dissociate in the two solvents.
- The solute should not react with either solvent.
- The two solvents must be immiscible
- The solutions used should be fairly dilute (the solute should not saturate either solvent).

7.2 Worked out examples on the Partition Coefficient

Worked out example 7.2.1

You are provided with the following:

GA1 which is trichloromethane

GA2 which is ammonia solution

GA3 which is 0.5M hydrochloric acid

GA4 which is 0.05M hydrochloric acid

Distilled water

You are required to determine the partition coefficient of ammonia between water and trichloromethane.

Procedure

- i) Using a thermometer, measure and record the room temperature.
- ii) Using a measuring cylinder, measure and transfer 60cm³ of GA1 into a clean conical flask. Add 15cm³ of GA2. To this mixture, add 100cm³ of distilled water and shake vigorously for 4 minutes. Allow the mixture to stand for about 7 minutes.
- iii) Decant the aqueous layer (upper layer) carefully into a small beaker (or boiling tube) and then cover.

- iv) Transfer the organic layer (lower layer) carefully into another small beaker (or boiling tube) and then cover.
- v) Pipette 25cm³ of the aqueous layer using a **pipette filleror suction pump** into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with GA3. Repeat the titration until you obtain consistent results. Record your results in **Table 1** below.

Table 1

Final burette reading (cm ³)	23.00	22.80	32.70
Initial burette reading (cm ³)	0.00	0.00	10.00
Volume of GA3 used (cm ³)	23.00	22.80	22.70

Values used to calculate average. 22.80, 22.70Average volume of GA3 used. $\left(\frac{22.80 + 22.70}{2}\right) = 22.75$ cm

vi) Pipette 25cm³ of the organic layer using a **pipette filleror suction pump** into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with GA4. Repeat the titration until you obtain consistent results. Record your results in **Table 2** below.

Table 2

Final burette reading (cm ³)	9.50	9.30	15.20
Tinal bulette reading (cm)	9.30	9.30	13.20
Initial burette reading (cm ³)	0.00	0.00	6.00
Volume of GA4 used (cm ³)	9.50	9.30	9.20

Ouestions

- a) Calculate concentration of ammonia in the:
 - i) aqueous layer in moldm⁻³.

1000cm³ of GA3 contain 0.5 moles of hydrochloric acid.

22.75cm³ of GA3 contain
$$\left(\frac{0.5}{1000} \times 22.75\right)$$
 motes of hydrochloric acid

= 0.011375 moles of hydrochloric acid

$$HCl(aq) + NH_3(aq) \rightarrow NH_4Cl(aq)$$

 $OR \ HCl(aq) + NH_4OH(aq) \rightarrow NH_4Cl(aq) + H_2O(l)$

Moles of ammonia = $(1 \times 1)^{-1}$ (1.0011375)

$$= (1x0.011375)$$

= 0.011375molesof ammonia

25cm³ of the aqueous layer contain 0.011375 moles of ammonia

$$1000 \text{cm}^3$$
 of the aqueous layer contain $\left(\frac{0.011375}{25} \times 1000\right)$ moles of ammonia

 $= 0.455 moldm^{-3}$

ii) organic layer in moldm⁻³.

1000cm³ of GA4 contain 0.05 moles of hydrochloric acid.

9.25cm³ of GA4 contain $\left(\frac{0.05}{1000} \times 9.25\right)$ moles of hydrochloric acid

= 0.0004625 motes of hydrochloric acid

 $Moles\ of\ ammonia = (Ixmoles\ of\ hydrochloric\ acid)$

$$= (1x0.0004625)$$

$$= 0.0004625$$

25cm³ of the organic layer contain 0.0004625moles of ammonia

1000cm³ of the organic layer contain $\left(\frac{0.0004625}{25} \times 1000\right)$ mates of ammonia = **0.0185 moldm**⁻³

b) Determine the value of the partition coefficient between water and trichloromethane at the specified temperature.

$$K_D = [NH_3]_{Water}$$

$$[NH_3]_{Trichloromethane}$$

$$= \underline{0.455}_{0.0185} \text{ mol } dm^{-3}$$

$$= 24.59$$

7.3 Practical Exercises on the Partition Coefficient

Experiment 7.3.1

You are provided with the following:

HA1 which is trichloromethane

HA2 which is ammonia solution

HA3 which is 0.5M hydrochloric acid

HA4 which is 0.05M hydrochloric acid

Distilled water

You are required to determine the partition coefficient of ammonia between trichloromethane and water.

Procedure

- i) Using a thermometer, measure and record the room temperature in the space provided below.
- ii)Using a measuring cylinder, measure and transfer 50cm³ of HA1 into a clean conical flask. Add 25cm³ of HA2. To this mixture, add 100cm³ of distilled water and shake vigorously for 4 minutes. Allow the mixture to stand for 7 minutes.
- iii) Decant the aqueous layer (upper layer) carefully into a small beaker (or boiling tube) and cover.
- iii) Transfer the organic layer (lower layer) carefully into another small beaker (or boiling tube) and cover.
- iv) Pipette 25cm³ of the aqueous layer using a **pipette filleror suction pump** into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with HA3. Repeat the titration until you obtain consistent results. Record your results in **Table 1** below.

Room temperature	⁰ C
Volume of pipette used for the aqueous layer	
Table 1	
Final burette reading (cm ³)	
Initial burette reading (cm ³)	
Volume of HA3 used (cm ³)	
Values used to calculate average	
Average volume of HA3 used	
flask. Add 2-3 drops of phenolphthalein indicator and titrat obtain consistent results. Record your results in Table 2 be	
obtain consistent results. Record your results in Table 2 be Volume of pipette usedfor organic layer	
obtain consistent results. Record your results in Table 2 be	
obtain consistent results. Record your results in Table 2 be Volume of pipette usedfor organic layer <i>Table 2</i>	
obtain consistent results. Record your results in Table 2 be Volume of pipette usedfor organic layer <i>Table 2</i> Final burette reading (cm ³)	
obtain consistent results. Record your results in Table 2 be Volume of pipette usedfor organic layer <i>Table 2</i> Final burette reading (cm ³) Initial burette reading (cm ³)	cm ³
Volume of pipette usedfor organic layer Table 2 Final burette reading (cm³) Initial burette reading (cm³) Volume of HA4 used (cm³)	cm ³
Volume of pipette usedfor organic layer Table 2 Final burette reading (cm³) Initial burette reading (cm³) Volume of HA4 used (cm³)	cm ³
Volume of pipette usedfor organic layer Table 2 Final burette reading (cm³) Initial burette reading (cm³) Volume of HA4 used (cm³) Values used to calculate average	cm ³
Volume of pipette usedfor organic layer Table 2 Final burette reading (cm³) Initial burette reading (cm³) Volume of HA4 used (cm³) Values used to calculate average	cm ³

ii) organic layer in moldm⁻³.

c)	Determine the value of the partition coefficient between trichloromethane and water at the specified temperature.

Experiment 7.3.2

You are provided with the following:

GA1 which is aqueous iodine.

GA2 which is a solution containing 6.2g of sodium thiosulphate pentahydrate, Na₂S₂O₃.5H₂O per litre of solution.

GA3 which is Trichloromethane

You are required to determine the distribution coefficient of iodine between trichloromethaneand water.

Theory

Iodine dissolves in both the aqueous solution of GA1 and in Trichloromethane in GA3. Consequently, when GA1 is shaken with a given volume of GA3, the iodine distributes itself between the two solutions. When the mixture is allowed to stand, two distinct layers are formed whereby the upper layer is a solution of iodine in tetrachloromethane while the lower layer is a solution of iodine in the aqueous layer of GA1.

The concentration of iodine solution in each of the layers is determined by titrating each of the two layers against the standard solution of thiosulphate ions.

Procedure

- i) Using a measuring cylinder, measureand carefully transfer 40cm³ of GA1 into a clean conical flask. Using another measuring cylinder, measure 40cm³ of GA3 and add it to the 40 cm³ of GA1 in the conical flask. Label this as **flask 1** and stopper it immediately. Shake the mixture and leave it to settle for 5 minutes.
- ii) By use of a measuring cylinder, still, measure carefully and transfer 20cm³ of GA1 into another conical flask. Again, by use of another measuring cylinder, add 40cm³ of GA3 to the 20 cm³ of GA1 in the conical flask. Label this as **flask 2** and stopper it immediately. Shake the mixture and leave it to settle for 5 minutes.

- iii) From **flask 1**, carefully pipette 10cm³ of the upper layer **using a suction pump or pipette filler** into a clean conical flaskand titrate this portion against GA2 from the burette using **starch indicator** while continuously shaking the flask in the process of titration. Record the volume of GA2 used in the table below.
- iv)Repeat procedure (iii) above, but this time while dealing with the lower layer of flask 1.
- v) From **flask 2**, using a different pipette, carefully pipette 10cm³ of the upper layer **using a suction pump** or **pipette filler** into a clean conical flaskand titrate this portion against GA2 from the burette using **starch indicator** while continuously shaking the flask in the process of titration. Record the volume of GA2 used in the table below.
- vi) Repeat procedure (v) above, but this time while dealing with the lower layer of flask 2.

Note: If you have no suction pump or pipette filler, you can carefully pour off the lower aqueous layer into a measuring cylinder to measure the required volume. Theupper organic layer (purple in colour) will remain floating within the conical flask and can also be carefully poured off as well into a measuring cylinder in order to measure off the required volume. However, this approach is inaccurate.

Flask Number	Flask 1		Flask 2	
Layer	Upper layer	Lower layer	Upper layer	Lower layer
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of GA2 used (cm ³)				

uestions) (a)Determine the concentration of S ₂ O ₃ ²⁻ in GA2 in moldm ⁻³ .(Na=23, S=32, O=16, H=1)
b) Write an ionic equation for the reaction between iodine and thiosulphate ions.

2) (a) Flask1

Calculate the:	
i) concentration of iodine in the upper layer (trichloromethane layer).	
	٠.
	• •
	• •
ii) concentration of iodine in the lower layer (aqueous layer).	
	• •
	٠.
	• •
	٠.
	٠.
iii) distribution coefficient, K _D of iodine between trichloromethane and water for flask1 .	
, , <u>, , , , , , , , , , , , , , , , , </u>	
	• •
	٠.
	٠.
(L) EL-1-2	
(b) Flask2	
Calculate the:	
i) concentration of iodine in the upper layer (trichloromethane layer)	
	• •
	• •
	• •
ii) concentration of iodine in the lower layer (aqueous layer)	
,	

	A Simplified Approach to A' Level Chemistry Practicals
	iii) distribution coefficient, K_D of iodine between trichloromethane and water for flask 2.
}a	sing on the values of K _D obtained for both 2(a) (iii) and 2(b) (iii) above, what conclusion do you
ce'	

CHAPTER EIGHT

8.0 INORGANIC QUALITATIVE ANALYSIS

8.1INTRODUCTION

Inorganic Qualitative Analysis is a branch of practical chemistry which deals with the identification of cations and anions present in a variety of inorganic compounds. At Advanced Level, Inorganic Qualitative Analysis deals with quite a large number of cations and anions.

8.1.1 Cations

Cations are positively charged ions. They fall in two major categories: Non-transition metal ions (non-coloured cations) and Transition metal ions (coloured cations). Non-transition metal ions form white compounds and colourless solutions while Transition metal ions form coloured compounds and coloured solutions.

a) Non-transition metal ions (Non-coloured cations)

At this Level, the non-coloured cations dealt with include the following:

Zinc ions, Zn²⁺

Lead(II) ions, Pb²⁺

Aluminium ions, Al³⁺

Ammonium ions, NH₄⁺

Calcium ions, Ca²⁺

Magnesium ions, Mg²⁺

Barium ions, Ba²⁺

Note: Others may include:

Tin(II) ions, Sn²⁺

Tin(IV) ions, Sn⁴⁺ and Silver ions, Ag⁺.

b) Transition metal ions (Coloured Cations)

At this level, the coloured cations dealt with include the following:

Copper(II) ions, Cu²⁺

Iron(II) ions, Fe²⁺

Nickel(II) ions, Ni²⁺

Chromium(III) ions, Cr³⁺

Iron(III) ions, Fe³⁺

Manganese(II) ions, Mn²⁺

Cobalt(II) ions, Co²⁺

8.1.2Anions

Anions are negatively charged ions. The Anions dealt with at this level include:

Carbonate ions, CO₃²⁻ and Hydrogencarbonate ions, HCO₃⁻

Sulphate ions, SO₄²

Sulphite ions, SO₃²

Thiosulphate ions, $S_2O_3^{2-}$

Oxalate ions, $C_2O_4^2$

Chloride ions, Cl

Iodide ions, I

Bromide ions, Br

Acetate ions/ethanoate ions, CH₃COO

Nitrate ions, NO₃

Nitrite ions, NO₂

Phosphate ions, PO₄³-

Chromate ions, CrO₄²-

Note: Others include:

Chloric(I) ions/Hypochlorite ions, ClO⁻/OCl⁻

Dichromate ions, Cr₂O₇²

8.2PRELIMINARY AND CONFIRMATORY TESTS

Preliminary tests are tests that give us a clue/hint on the nature of the solid and on which ions are possibly present (suspected to be present) in the sample under analysis.

Confirmatory tests are tests that prove to us beyond reasonable doubt that a given ion is actually present in the sample under analysis.

Note: Inorganic Qualitative Analysis is carried out basing on preliminary and confirmatory tests of both cations and anions

8.2.1Physical appearance of solids

The physical appearance of a solid concerns the colour and texture of the solid. The texture of a solid concerns whether the solid is crystalline or powdered/powdery. In terms of colour, a solid may appearwhite, green, blue, pink/red, brown, yellow or orange, purple, violet, e.t.c. If the solid is white, then it contains non-transition metal ions. However, if a solid is coloured, then it contains transition metal ions whereby the specific colour of the solid points to which specific transition metal ion is possibly present. The colour of a solid, therefore, gives an overview of which cations are suspected to be present in that solid. The table below is a summary of cations that should be suspected for specific colours of solids.

Colour of solid	Deduction
White	Zn ²⁺ , Pb ²⁺ , Al ³⁺ , Ca ²⁺ , Mg ²⁺ , Ba ²⁺ , NH ₄ ⁺ , Sn ²⁺ , Sn ⁴⁺
Green	Fe ²⁺ , Cu ²⁺ , Ni ²⁺ , Cr ³⁺
Blue	Cu ²⁺
Brown	Fe^{2+}, Fe^{3+}
Yellow or Orange	CrO_4^{2-} or $\text{Cr}_2\text{O}_7^{2-}$ i.e. Cr^{6+} or PbO(s) hence Pb ²⁺
Deep pink or Red	Co ²⁺
Very pale pink	Mn^{2+}
Purple	MnO ₄ i.e. Mn ⁷⁺
Violet	Cr ³⁺
Black	CuO(s), FeO, NiO(s) or CoO(s) hence Cu ²⁺ , Fe ²⁺ , Ni ²⁺ or Co ²⁺

Note: 1) In case a solid has got a crystalline texture, the expectation is that it has got water of crystallisation and therefore when such a solid is heated, water is given off.

2) While making the deduction, in relation to the physical appearance of a solid, the deduction should be based on mainly the colour of the solid and therefore the main point is the type of cations present which actually influence the colour of the solid.

8.2.2 Soluble and Insoluble Salts

Solubility of salts in inorganic qualitative analysis is looked at in relation to water as the solvent.

a) Soluble Salts

Soluble salts are those that dissolve in water to form aqueous solutions. They tend to have a crystalline texture. Soluble salts include the following:

- All potassium, sodium and ammonium salts
- All nitrates
- All Ethanoates/Acetates
- All hydrogencarbonates
- All nitrites except except silver nitrite which is sparingly soluble.
- All common Halides (Chlorides, Bromides and Iodides) except those of Ag⁺, Pb²⁺ and Cu⁺.

Note: Halides of Pb²⁺ are insoluble in cold water but sparingly soluble in warm water/hot water.

• All common sulphates except those of Pb²⁺ and Ba²⁺.

Note: Calcium sulphate and silver sulphate are sparingly soluble.

- All sulphites are soluble except those of Pb²⁺, Ba²⁺ and Ca²⁺.
- All hypochlorites are soluble except those of Pb²⁺ and Ag⁺.
- All chromates are soluble except those of Pb²⁺, Ba²⁺ and Ag⁺.

Note: Calcium chromate is sparingly soluble.

b) Insoluble salts

Insoluble salts are those that do not dissolve in water. However, they can dissolve in dilute acids. The dilute acid most commonly used in dissolving insoluble salts is dilute nitric acid; dilute hydrochloric acid and dilute sulphuric acid may also be used in dissolving specific insoluble salts.

Insoluble salts tend to have a powdered/powdery texture. Insoluble salts include the following:

- All Carbonates except those of K⁺, Na⁺ and NH₄⁺.
- All Oxalates except those of K⁺, Na⁺ and NH₄⁺.
- All Phosphates except those of K⁺, Na⁺ and NH₄⁺.

• Halides of Pb²⁺, Ag⁺, Cu⁺.

Note: Halides of Pb²⁺ are insoluble in cold water but sparingly soluble in warm water/hot water.

• Sulphates of Pb²⁺and Ba²⁺.

Note: Calcium sulphate and Silver sulphate are sparingly soluble.

- Sulphites of Pb²⁺, Ba²⁺ and Ca²⁺.
- Hypochlorites of Pb²⁺ and Ag⁺.
- Chromates of Pb²⁺, Ba²⁺ and Ag⁺.

Note: Calcium chromate is sparingly soluble.

8.2.3 Solutions formed by soluble and insoluble salts

In dissolving a salt in water or an acid, to a spatula endful or two spatula endfuls of the solid, in a clean test tube, 4 to 7cm³ of water or the acid is added. This is usually followed by shaking of the test tube and its contents in order to dissolve effectively. While dissolving an insoluble salt in an acid, it is important to note whether the solid dissolves with effervescence or not; and in case the insoluble salt does not dissolve effectively in the acid, some gentle warming may be required.

Soluble salts dissolve in water and insoluble salts dissolve in acids to form solutions which may be colourless for non-coloured cations or coloured for coloured cations.

Note: Dilute nitric acid can dissolve insoluble salts of all cations while dilute hydrochloric and sulphuric acids dissolve insoluble salts of all cations except lead(II) ions.

Colour of solution	Deduction
Colourless	Zn ²⁺ , Pb ²⁺ , Al ³⁺ , Ca ²⁺ , Mg ²⁺ , Ba ²⁺ , NH ₄ ⁺ , Sn ²⁺
Green	Fe ²⁺ , Cu ²⁺ , Ni ²⁺ , Cr ³⁺
Blue	Cu^{2+}
Brown	Fe ³⁺
Yellow or Orange	Cr^{6+} (in form of $\operatorname{CrO_4}^{2-}$ or $\operatorname{Cr_2O_7}^{2-}$)
Deep pink or Red	Co ²⁺
Very pale pink (basically appearing	_
colourless in dilute solution)	Mn^{2^+}
Purple	Mn^{7+} (in form of MnO_4)

8.2.4Action of heat on unknown solids

In this case, one or two spatula end fulls of the solid are heated gently and then strongly in a dry test tube until there is no further change. In most cases salts decompose on heating to form metal oxides as residues; gaseous non-metal oxides are also evolved in the process; for instance, carbon dioxide gas in case the solid contains a carbonate, hydrogenearbonate, oxalateor ethanoate/acetate; plussulphur dioxide and sulphur trioxide in case the solid contains a sulphate or sulphite. The gases evolved depend on the anions present in the solid while the metal oxide formed as residue depends on the cations present in the solid sample.

Note: The ammonium ion is the only cation which influences the gas evolved on heating a solid (Ammonia gas is evolved when a solid containing the ammonium ion is heated). The following should be noted in the process of heating:

- a) The physical appearance of the solid before and after heating (residue). The colour of the residue should be noted when hot and on cooling (some metal oxides have different colours when hot and when cold).
- b) The colour of the sublimate, if at all the solid sublimes on heating (ammonium compounds form a white sublimate on heating).
- c) Any vapour or gas evolved should be identified using an appropriate chemical test.

i) Colour changes that occur to solids on heating and their implication

Appearance of solid before	Appearance of the	Deduction
heating	residue	
White crystalline/powdered solid	Yellow residue when hot,	ZnO(s) formed
	turns white on cooling.	hence Zn ²⁺
White crystalline/powdered solid	Reddish-brown residue	PbO(s) formed
	when hot, turns	hence Pb ²⁺
	yellow/orange on cooling.	
White crystalline/powdered solid.	White residue	Al ₂ O ₃ (s) formed hence Al ³⁺
		or MgO(s) formed hence Mg ²⁺

		orCaO(s) formed hence Ca ²⁺
		orBaO(s) formed hence Ba ²⁺
Blue crystalline solid.	Black residue.	CuO(s) formed hence Cu ²⁺
Blue crystalline solid.	Whiteresidue.	Hydrated Cu ²⁺ turns to anhydrous
		Cu ²⁺
Green crystalline/powdered solid	Black residue	CuO(s) formed hence Cu ²⁺
		Or NiO(s) formed hence Ni ²⁺
Pale green crystalline solid	Reddish-brown residue	Fe ₂ O ₃ (s) formed Fe ²⁺ oxidized to Fe ³⁺
		Fe ²⁺ oxidized to Fe ³⁺
Brown	Reddish-brown residue.	Fe ₂ O ₃ (s) formed hence Fe ³⁺
Deep pink	Blue and then black on	Hydrated Co ²⁺ turns to anhydrous
	very strong heating.	Co^{2+} and then to $CoO(s)$
Very pale pink	Black residue	MnO ₂ (s) formed
crystalline/powdered solid		Mn ²⁺ oxidized to Mn ⁴⁺ .

ii) Gases and vapours given off during heating of a solid

Observation	Deduction
A colourless condensate(or a colourless liquid) which turns anhydrous	Water of crystallization
copper(II) sulphate from white to blue (or turns cobalt(II) chloride paper	(or H ₂ O given off from a
from blue to pink).	hydrated salt)
A colourless gas which turns moist blue litmus paper red/pink and	CO ₂ (g) evolved
limewater milky.	CO_3^{2-} , HCO_3^{-} , $C_2O_4^{2-}$,
	CH ₃ COO suspected
A colourless, pungent, chocking gas, turns moist red litmus paper blue	NH ₃ (g) evolved
and forms dense white fumes with concentrated hydrochloric acid.	NH ₄ ⁺ suspected
A colourless, pungent gas, turns moist blue litmus paper red and	SO ₂ (g) evolved
bleaches it, and turns acidifie potassium dichromate solution from	$SO_4^{2^2}$, $SO_3^{2^2}$ suspected
orange to green/turns acidified potassium permanganate solution from	_
purple to colourless.	
White fumes (smoky white fumes) which turn moist blue litmus paper	SO ₃ (g) evolved
red and form a white precipitate with barium nitrate solution.	SO ₄ ²⁻ suspected
Misty fumes with a chocking smell turn moist blue litmus paper red and	HCl(g) evolved
form dense white fumes with concentrated ammonia.	Cl⁻ suspected
Brown fumes with a pungent smell and turn moist blue litmus paper red	NO ₂ (g) evolved
anda colourless gas which relights a glowing splint.	$O_2(g)$ evolved
A cracking sound is heared.	NO ₃ suspected
A colourless vapour with a sweet odour; forms a yellow precipitate with	CH ₃ COCH ₃ (g) evolved
2,4-dinitrophenylhydrazine solution (Brady's reagent).	CH ₃ COO ⁻ suspected
Brown vapour which turns moist blue litmus paper red and bleaches it.	Br ₂ (g) evolved
	Br suspected
Purple vapour which turns moist blue litmus paper red; sublimes to form	I ₂ (g) evolved
a black/purple/purplish-black solid.	I suspected

Note: When nitrates are decomposed by heat, there are some differences in the products formed depending on the position of the metal in the electrochemical series.

Nitrates of potassium and sodium decompose to form the metal nitrites and oxygen gas. For instance:

$$2KNO_3(s) \rightarrow 2KNO_2(s) + O_2(g)$$

$$2NaNO_3(s) \rightarrow 2NaNO_2(s) + O_2(g)$$

Nitrates of calcium, magnesium, aluminum, zinc, iron, lead and copper decompose to form the metal oxides, nitrogen dioxide gas and oxygen gas. For instance:

$$2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$$

Nitrates of mercury and silver decompose to form the metal (since the metal oxides are themselves decomposed by heat), nitrogen dioxide gas and oxygen gas.

$$\begin{split} &Hg(NO_3)_2(s) \to &Hg(s) + 2NO_2(g) + O_2(g) \\ &2AgNO_3(s) \to &Ag(s) + 2NO_2(g) + O_2(g) \end{split}$$

8.3 DETECTION OF CATIONS AND ANIONS IN SOLIDS AND SOLUTIONS

8.3.1 Reagents used in the identification of cations in solids and solutions

The major reagents used include dilute sodium hydroxide solution, dilute ammonium hydroxide solution (dilute ammonia solution), sodium carbonate solution, potassium iodide solution, potassium chromate(VI) solution, disodium hydrogenphosphate solution, ammonium oxalate solution, litmus solution, dimethyl glyoxime solution, potassium hexacyanoferrate(II) solution, potassium hexacyanoferrate(III) solution, ammonium thiocyanate solution/potassium thiocyanate solution plus many other reagents.

a) Action of dilute sodium hydroxide solution

To the test solution, dilute sodium hydroxide solution is added drop wise until in excess. In case a precipitate is formed on addition of a few drops of dilute sodium hydroxide solution, the precipitate's colour is noted and the sodium hydroxide solution is added in excess as the student notes whether the precipitate dissolves in excess or not.

Incase no precipitate is formed, the solution is warmed gently and the gas evolved is tested with litmus paper and concentrated HCl (this is done in case the ammonium ion is suspected to be present). Zn²⁺, Pb²⁺ and Al³⁺ not only form white precipitates of their hydroxides on addition of a few drops of sodium hydroxide solution, but their precipitates also dissolve in excess sodium hydroxide solution to form colourless complexes which appear as colourless solutions. This is so because their hydroxides are amphoteric (have both basic and acidic properties).

i) For
$$Zn^{2+}$$
,

In a little dilute Sodium hydroxide solution,

$$Zn^{2+}(aq) + 2OH(aq) \rightarrow Zn(OH)_2(s)$$

White precipitate of zinc hydroxide

In excess dilute Sodium hydroxide solution,

$$Zn(OH)_2(s) + 2OH^-(aq) \rightarrow [Zn(OH)_4]^{2-}(aq)$$

Colourless solution of the tetrahydroxozincate(II) ion

ii) For Pb²⁺,

In a little dilute sodium hydroxide solution,

$$Pb^{2+}(aq) + 2OH(aq) \rightarrow Pb(OH)_2(s)$$

White precipitate of lead(II) hydroxide

In excess dilute sodium hydroxide solution,

$$Pb(OH)_2(s) + 2OH^{-}(aq) \rightarrow [Pb(OH)_4]^{2-}(aq)$$

Colourless solution of the tetrahydroxoplumbate(II) ion

iii)For Al³⁺,

In a little dilute sodium hydroxide solution,

$$Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_3(s)$$

White precipitate of aluminium hydroxide

In excess dilute sodium hydroxide solution,

$$Al(OH)_3(s) + OH(aq) \rightarrow [Al(OH)_4](aq)$$

Colourless solution of the tetrahydroxoaluminate(III) ion

iv) For Sn²⁺,

In a little dilute sodium hydroxide solution,

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}(\operatorname{aq}) \to \operatorname{Sn}(\operatorname{OH})_2(\operatorname{s})$$

White precipitate of tin(II) hydroxide

In excess dilute sodium hydroxide solution,

$$Sn(OH)_2(s) + 2OH(aq) \rightarrow [Sn(OH)_4]^{2}(aq)$$

Colourless solution of the tetrahydroxostannate(II) ion

Other cations such as Ca^{2+} , Mg^{2+} and Ba^{2+} form white precipitates of their hydroxides in a little sodium hydroxide solution which are insoluble in excess.

$$Ca^{2+}(aq) + 2OH(aq) \rightarrow Ca(OH)_2(s)$$

White precipitate of calcium hydroxide

$$Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$$

White precipitate of magnesium hydroxide

$$Ba^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ba(OH)_{2}(s)$$

White precipitate of barium hydroxide

Note:1) With NH₄⁺, there is no observable change with dilute sodium hydroxide solution. This is because the ammonium hydroxide formed is a soluble salt and therefore the solution remains colourless.

2) However, when dilute sodium hydroxide solution is added to a solution of NH₄⁺ and the solution warmed, acolourless, pungent, chocking gas which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid, is evolved. The gas evolved is ammonia.

$$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(g) + H_2O(l)$$

Cu²⁺ form a pale blue precipitate of copper(II) hydroxide in a little sodium hydroxide solution, which is insoluble in excess.

$$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$$

Pale blue precipitate of copper(II) hydroxide

In case addition of excess sodium hydroxide solution is followed by heating, the pale blue precipitate turns black. This is due to the formation of copper(II) oxide.

$$Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(1)$$

Fe²⁺ form a dirty green precipitate of iron(II) hydroxide in a little sodium hydroxide solution which is insoluble in excess.

Fe²⁺ (aq) + 2OH⁻(aq)
$$\rightarrow$$
 Fe(OH)₂(s)

Dirty green precipitateof iron(II) hydroxide

The dirty green precipitates lowly turns brown on standing due to aerial oxidation of Fe^{2^+} to Fe^{3^+} .

i.e.
$$4\text{Fe}(OH)_2(s) + O_2(g) + 2H_2O(1) \rightarrow 4\text{Fe}(OH)_3(s)$$

Brown precipitate of iron(III) hydroxide

Fe³⁺ form a brown precipitate (reddish-brown/rusty-brown precipitate) in a little sodium hydroxide solution which is insolublein excess.

$$Fe^{3+}$$
 (aq) + 3OH⁻(aq) \rightarrow Fe(OH)₃(s)

Brown precipitate of iron(III) hydroxide

Ni²⁺ form a pale green precipitatae insoluble in excess

$$Ni^{2+}$$
 (aq) + $2OH^{-}$ (aq) $\rightarrow Ni(OH)_2(s)$

Pale green precipitate of nickel(II) hydroxide

Cr³⁺ form a green precipitate (grey-green precipitate) soluble in excess to form a green solution.

$$Cr^{3+}(aq) + 3OH(aq) \rightarrow Cr(OH)_3(s)$$

Green precipitate of chromium(III) hydroxide

In excess dilute sodium hydroxide solution,

$$Cr(OH)_3(s) + OH(aq) \rightarrow [Cr(OH)_4](aq)$$

Green solution of the tetrahydroxochromate(III) ion

OR
$$Cr(OH)_3(s) + 3OH^-(aq) \rightarrow [Cr(OH)_6]^{3-}(aq)$$

Green solution of the hexahydroxochromate(III) ion

Mn²⁺ form a dirty white precipitate insoluble in excess.

$$Mn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mn(OH)_{2}(s)$$

Dirty white precipitate of manganese(II) hydroxide

The dirty white precipitate, however, turns brown on standing in air (due to aerial oxidation of Mn^{2+} to Mn^{3+}).

$$2Mn(OH)_2(s) + \frac{1}{2}O_2(g) \rightarrow Mn_2O_3.2H_2O(s)$$

Brown precipitate of hydrated manganese(III) oxide

Co²⁺ form a blue precipitate insoluble in excess.

$$\operatorname{Co}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^{-}(\operatorname{aq}) \rightarrow \operatorname{Co}(\operatorname{OH})_{2}(\operatorname{s})$$

Blue precipitate of cobalt(II) hydroxide

The blue precipitate, however, turns pink on standing due to aerial oxidation of Co²⁺ to Co³⁺.

$$2\text{Co(OH)}_2(s) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{Co}_2\text{O}_3.2\text{H}_2\text{O}(s)$$

Pink precipitate of hydratedcobalt(III) oxide

With Cr^{6+} in the form of dichromate(VI) ions, $Cr_2O_7^{2-}$, the orange solution turns yellow. This is due to formation of chromate(VI) ions, CrO_4^{2-} as shown below:

$$Cr_2O_7^{2-}(aq) + 2OH^{-}(aq) \rightarrow 2CrO_4^{2-}(aq) + H_2O(1)$$

Orange solution

Yellow solution

Table showing summary of action of dilute sodium hydroxide solution on solutions of various cations

Observation	Deduction
A white precipitate soluble in excess to form a colourless solution.	Zn ²⁺ , Pb ²⁺ , Al ³⁺ Sn ²⁺
A white precipitate insoluble in excess.	Ca ²⁺ , Mg ²⁺ , Ba ²⁺
A pale blue precipitate insoluble in excess.	Cu ²⁺
A dirty green precipitate insoluble in excess.	Fe ²⁺

A brown precipitate (reddish-brown precipitate/rusty-brown precipitate) insoluble	Fe ³⁺
in excess.	
No observable change but on warming, a colourless, pungent, chocking gas that	NH ₃ (g) evolved
turns moist red litmus paper blue and forms dense white fumes with concentrated	NH ₄ ⁺ confirmed
hydrochloric acid.	present
A pale green precipitate insoluble in excess.	Ni ²⁺
A green precipitate (grey-green precipitate) soluble in excess to form a green	Cr ³⁺
solution.	
A dirty white precipitate insoluble in excess, turns brown on standing in air.	Mn ²⁺
A blue precipitate insoluble in excess, turns pink on standing, turns brown on	Co ²⁺
further standing.	
Orange solution turns yellow.	$\text{Cr}_2\text{O}_7^{2-}$ turns to
	CrO_4^{2-}

b) Action of dilute ammonium hydroxide solution (dilute ammonia solution)

To the test solution, dilute ammonium hydroxide solution is added drop wise until in excess. Incase a precipitate is formed on addition of a few drops of dilute ammonium hydroxide solution, the precipitate's colour is noted and the ammonium hydroxide solution is added in excess as the student notes whether the precipitate dissolves in excess or not.

It is only Zn²⁺ ions that form a white precipitate that is soluble in excess ammonia solution to form a colourless solution. This is due to formation of a soluble complex called the tetraamminezinc(II) ion in excess ammonia solution

With a little dilute ammonium hydroxide solution,

$$Zn^{2+}(aq) + 2OH(aq) \rightarrow Zn(OH)_2(s)$$

White precipitate of zinc hydroxide

With excess dilute ammonia solution,

$$Zn(OH)_2(s) + 4NH_3(aq) \rightarrow [Zn(NH_3)_4]^{2+}(aq) + 2OH^*(aq)$$

Tetraamminezinc(II) ion
(Colourless solution)

Pb²⁺, Al³⁺and Sn²⁺form white precipitates with a little dilute ammonia solution, which are insoluble in excess. The white precipitates are of lead(II) hydroxide aluminium hydroxide and tin(II) hydroxide respectively.

$$Pb^{2+}(aq) + 2OH^{-}(aq) \rightarrow Pb(OH)_{2}(s)$$
White precipitate of lead(II) hydroxide

$$Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$$

White precipitate of aluminium hydroxide

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^{-}(\operatorname{aq}) \to \operatorname{Sn}(\operatorname{OH})_2(\operatorname{s})$$

White precipitate of tin(II) hydroxide

Since the three cations, Pb^{2+} , Al^{3+} and Sn^{2+} behave in a similar way with both dilute sodium hydroxide and dilute ammonia solution, hence there is need for another reagent to differentiate between the two; the reagent is potassium iodide solution. Pb^{2+} ions form a yellow precipitate of lead(II) iodide while with Al^{3+} and Sn^{2+} ions, there is no observable change.

$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$$
Yellow precipitate

In case the potassium iodide solution used is sufficiently concentrated (e.g. 50—60% potassium iodide solution), and is used in excess, the yellow precipitate of lead(II) iodide dissolves in excess to form a colourless solution. This is due to formation a soluble complex referred to as the tetraiodoplumbate(II) ion.

$$PbI_2(s) + 2I^-(aq) \rightarrow PbI_4^{2-}(aq)$$

Colourless solution of the tetraiodoplumbate(II) ion

Note: This can also be used as a confirmatory test for Pb^{2+} .

With Mg²⁺ and Ba²⁺, on addition of a little dilute ammonia solution, a white precipitate is formed, which is insoluble in excess.

$$Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$$

White precipitate of magnesium hydroxide

 $Ba^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ba(OH)_{2}(s)$

White precipitate of barium hydroxide

With Ca^{2+} , on addition of a little dilute ammonia solution until in excess, there is no observable change. This is because the concentration of hydroxyl ions, OH⁻ formed by partial ionization of the ammonia solution is low and hence the K_{sp} is not sufficient to exceed the ionic product.

Similarly, when ammonia solution is added to a solution containing NH_4^+ , there is no observable change.

Cu²⁺ form a pale blue precipitate of copper(II) hydroxide with a little ammonia solution, which dissolves in excess to form a deep blue solution. The deep blue solution is due to formation of a soluble complexreferred to as the tetraamminecopper(II) ion.

With a little dilute ammonia solution,

$$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_2(s)$$

Pale blue precipitate

With excess dilute ammonia solution,

$$Cu(OH)_2(s) + 4NH_3(aq) \rightarrow [Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$$

Tetraamminecopper(II) ion
(Deep blue solution)

Note: This is one of the confirmatory tests for Cu²⁺ions.

Fe²⁺ form a dirty green precipitate of iron(II) hydroxide with a little dilute ammonia solution, which is insoluble in excess.

Fe²⁺ (aq) + 2OH⁻(aq)
$$\rightarrow$$
 Fe(OH)₂(s)

Dirty green precipitate

The dirty green precipitate, however, slowly turns brown on standing due to aerial oxidation of Fe^{2+} to Fe^{3+} .

i.e.
$$4Fe(OH)_2(s) + O_2(g) + 2H_2O(l) \rightarrow 4Fe(OH)_3(s)$$

Brown precipitate of iron(III) hydroxide

Fe³⁺ form a brown precipitate (reddish-brown/rusty-brown precipitate) of iron(III) hydroxide in a little dilute ammonia solution, which is insoluble in excess.

$$Fe^{3+}$$
 (aq) + 3OH (aq) \rightarrow Fe (OH)₃(s)

Brown precipitate

Ni²⁺ form a pale green precipitate soluble in excess to form a blue solution. The blue solution is due to formation of the complex ion called the hexaamminenickel(II) ion.

$$Ni^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ni(OH)_{2}(s)$$

Pale green precipitate of nickel(II) hydroxide

$$Ni(OH)_2(s) + 6NH_3(aq) \rightarrow [Ni(NH_3)_6]^{2+}(aq) + 2OH^{-}(aq)$$

Blue solution of the hexaamminenickel(II) ion

Cr³⁺ form a green precipitate(grey-green precipitate) insoluble in excess.

$$Cr^{3+}(aq) + 3OH(aq) \rightarrow Cr(OH)_3(s)$$

Green precipitate of chromium(III) hydroxide

Mn²⁺ form a dirty white precipitate insoluble in excess, turns brown on standing in air (due to aerial oxidation of Mn²⁺ to Mn³⁺). Mn²⁺(aq) + 2OH⁻(aq) \rightarrow Mn(OH)₂(s)

$$Mn^{2+}(aq) + 2OH(aq) \rightarrow Mn(OH)_2(s)$$

Dirty white precipitate of manganese(II) hydroxide

Co²⁺ form a blue precipitate insoluble in excess.

$$Co^{2+}(aq) + 2OH^{-}(aq) \rightarrow Co(OH)_{2}(s)$$

Blue precipitate of cobalt(II) hydroxide

However, if concentrated ammonia solution is added drop wise until in excess to an aqueous solution of cobalt(II) ions, Co²⁺, a blue precipitate is formed which is soluble in excess to form a pale yellow solution, which turns brown on standing in air.

$$Co^{2+}(aq) + 2OH^{-}(aq) \rightarrow Co(OH)_2(s)$$

Blue precipitate of cobalt(II) hydroxide

$$Co(OH)_2(s) + 6NH_3(aq) \rightarrow [Co(NH_3)_6]^{2+}(aq) + 2OH^{-}(aq)$$
Hexaamminecobalt(II) ion

(Pale vellow solution)

(Pale vellow solution)

$$[Co(NH_3)_6]^{2+}(aq) \rightarrow [Co(NH_3)_6]^{3+}(aq) + e^{-}$$

Hexaamminecobalt(III) ion (Brown solution)

Table showing summary of action of dilute ammonia solution (dilute ammonium hydroxide solution) on solutions of various cations

Observation	Deduction
A white precipitate soluble in excess to form a colourless solution.	Zn ²⁺
A white precipitate insoluble in excess.	Pb ²⁺ ,Al ³⁺ , Sn ²⁺ , Mg ²⁺ , Ba ²⁺
No observable change.	Ca ²⁺ , NH ₄ ⁺
A pale blue precipitate soluble in excess to form a deep blue solution.	Cu ²⁺
A dirty green precipitate insoluble in excess.	Fe ²⁺
A brown precipitate(reddish-brown precipitate/rusty-brown precipitate) insoluble in excess.	Fe ³⁺
A pale green precipitate soluble in excess to form a blue solution.	Ni ²⁺
A green precipitate(grey-green precipitate) insoluble in excess.	Cr ³⁺
A blue precipitate insoluble in excess.	Co ²⁺

c) Action of sodium carbonate solution

To the test solution, sodium carbonate solution is added drop wise until in excess. All cations whose carbonates are stable, e.g. Zn^{2+} , Pb^{2+} , Mg^{2+} , Ca^{2+} , Cu^{2+} and Fe^{2+} form precipitates that are insoluble in excess. For Zn^{2+} , Pb^{2+} , Mg^{2+} , Ca^{2+} , Ba^{2+} , a white precipitate insoluble in excess is observed; for Cu^{2+} , a green precipitate insoluble in excess (or a blue precipitate insoluble in excess) is observed while for Fe^{2+} a dirty green precipitate insoluble in excess is observed. However, for the aluminium ion, Al^{3+} the iron(III) ion, Fe^{3+} and and chromium(III) ions, Cr^{3+} whose carbonatesare very unstable, as soon as they are formed, they decompose to form carbon dioxide gas and meanwhile the corresponding metal hydroxides are formed. Consequently, the precipitates of the metal hydroxide are formed which are insoluble in excess sodium carbonate solution with effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky.

(a)
$$Zn^{2+}(aq) + CO_3^{2-}(aq) \rightarrow ZnCO_3(s)$$

(b)
$$Pb^{2+}(aq) + CO_3^{2-}(aq) \rightarrow PbCO_3(s)$$

(c)
$$Mg^{2+}(aq) + CO_3^{2-}(aq) \rightarrow MgCO_3(s)$$

(d)
$$Ca^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CaCO_3(s)$$

(e)
$$Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow BaCO_3(s)$$

(f)
$$Cu^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CuCO_3(s)$$

OR:

$$CO_3^2$$
-(aq) + 2H₂O(1) \longrightarrow 2OH-(aq) + H₂CO₃(aq)
 Cu^{2+} (aq) + 2OH-(aq) \longrightarrow Cu(OH)₂(s)

(g)
$$Fe^{2+}(aq) + CO_3^{2-}(aq) \rightarrow FeCO_3(s)$$

(h)
$$2Al^{3+}(aq) + 3CO_3^{2-}(aq) + 3H_2O(l) \rightarrow 2Al(OH)_3(s) + 3CO_2(g)$$

(i)
$$2\text{Fe}^{3+}(aq) + 3\text{CO}_3^{2-}(aq) + 3\text{H}_2\text{O}(1) \rightarrow 2\text{Fe}(\text{OH})_3(s) + 3\text{CO}_2(g)$$

(j)
$$2Cr^{3+}(aq) + 3CO_3^{2-}(aq) + 3H_2O(1) \rightarrow 2Cr(OH)_3(s) + 3CO_2(g)$$

Observation	Cation
A white precipitate insoluble in excess.	Zn^{2+}
White precipitate insoluble in excess with ffervescence of a	Al^{3+}
colourless gas that turns limewater milky.	
A white precipitate insoluble in excess.	Zn ²⁺ , Pb ²⁺ , Mg ²⁺ , Ca ²⁺ , Ba ²⁺ , Sn ²⁺
A dirty white precipitate insoluble in excess, turns brown on standing	Mn^{2^+}
in air.	
A green precipitate (or grey-green or grey-blue precipitate)insoluble	Cr ³⁺
in excesswith effervescence of a colourless gas that turns limewater	
milky.	
A green precipitate insoluble in excess (or blue precipitate insoluble	Cu ²⁺
in excess).	
Adirty green precipitate insoluble in excess.	Fe^{2+}
A brown/reddish-brown /rusty brown precipitate insoluble in excess	Fe ³⁺

with effervescence of a colourless gas which turns limewater milky.	
Pale green precipitate insoluble in excess.	Ni ²⁺
A blue-green precipitate soluble in excess.	Cr ³⁺
A pink-violet precipitate insoluble in excess.	Co ²⁺
No observable change.	NH ₄ ⁺

Note: When sodium carbonate solution is added to a solution containing an acid (a solution containing Hydrogen ions), there is effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky. The gas evolved is carbon dioxide due to the following reaction.

$$2H^{+}(aq) + CO_3^{2-}(aq) \rightarrow H_2O(1) + CO_2(g)$$

d) Action of potassium iodide solution

Potassium iodide solution is used to test for the presence of Pb²⁺. About 2-3 drops of potassium iodide solution are added to the test solution. Formation of a yellow precipitate indicates the presence of Pb²⁺. lead(II) ions react with Iodide ions in potassium iodide to form lead(II) iodide which is an insoluble salt and appears as a yellow precipitate.

$$Pb^{2+}(aq) + 2\Gamma(aq) \rightarrow PbI_2(s)$$
Yellow precipitate

Test	Observation	Deduction
To the test solution, add 2-3	A yellow precipitate is formed.	Pb ²⁺ present
drops of otassium iodide		
solution.		

In case the Potassium iodide solution used is sufficiently concentrated and is used drop wise until in excess, the yellow precipitate of lead(II) iodide formed on addition of a few drops of potassium iodide solution dissolves in excess to form a colourless solution. This is due to formation of the tetraiodoplumbate(II) ion. When used in such a way, potassium iodide solution is used to confirm the presence of Pb²⁺.

$$PbI_2(s) + 2I^{-}(aq) \rightarrow PbI_4^{2-}(aq)$$

$$Colourless \ solution \ of \ the$$

$$tetraiodoplumbate(II) \ ion$$

Test	Observation	Deduction
To the test solution, add potassium iodide solution	A yellow precipitate soluble in excess forming a colourless	Pb ²⁺ confirmed present
dropwise until in excess.	solution.	-

Note: Potassium iodide solution can also be used to confirm the presence of copper(II) ions, Cu^{2+} . The presence of Cu^{2+} is shown by formation of a white precipitate in a brown solution. The white precipitate is due to formation of copper(I) iodide, Cu_2I_2 . The brown solution is due to formation of Iodine solution.

$$2Cu^{2+}(aq) + 4I(aq) \rightarrow Cu_2I_2(s) + I_2(aq)$$

However, if this is followed by addition of Sodium thiosulphate solution, the brown solution turns colourless, leaving behind the white precipitate. This is due to the reduction of aqueous Iodine by thiosulphate ions to iodide ions.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I(aq) + S_4O_6^{2-}(aq)$$

e) Action of Litmus solution

Litmus solution is used in confirming the presence of Al³⁺. To the test solution, about 2 drops of litmus solution, followed by about 1cm³ of dilute hydrochloric acid and then dilute ammonia solution untilthe solution is just alkaline and then Alizarin Reagent. Formation of a pink colouration confirms the presence of Al³⁺.

OR To the test solution 2-3 drops of dilute nitric acid are added followed by 3-4 drops of litmus solution and then dilute ammonia solution drop wise until in excess. Formation of a blue lake solution confirms the presence of Al^{3+}

Note: Litmus blue solution should be preferably used for this test.

f) Action of dilute hydrochloric acid

Dilute hydrochloric acid is also used to test for the presence of Pb²⁺. To the test solution, a few drops (1-2drops) of dilute hydrochloric acid are added and the resultant solution warmed/heated. This may be followed by cooling the warmed/heated solution in the test tube under running tap water. Presence of Pb²⁺ is shownby formation of a white precipitate which dissolves on warming/heating. The precipitate reappears if the warmed/heated solution is allowed to cool.

Note: Sodium chloride solution can also be used for the same purpose in place of dilute hydrochloric acid.

Observation	Deduction
A white precipitate which dissolves on warming/boiling,	Pb ²⁺ present
precipitate reappears on cooling.	

The above test is based on the fact that Pb²⁺ ions react with Cl⁻ ions in the dilute hydrochloric acid to form lead(II) chloride which is insoluble in cold water and soluble in warm/hot water.

$$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$$
White precipitate

g) Action of dilute sulphuric acid

Dilutesulphuric acid is used to test for the presence of Pb²⁺, Ba²⁺ and Ca²⁺. When any of the cations stated above is present, a white precipitate is formed. This is because the sulphates of the cations stated above are insoluble and appear as white precipitates. However, calcium sulphate is sparingly soluble. For example:

$$Pb^{2+} + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$$
White precipitate

Test	Observation	Deduction
To the test solution, add 2-3 drops	A white precipitate is formed.	Pb ²⁺ , Ba ²⁺ , Ca ²⁺
of dilute sulphuric acid.		

Note: Sodium sulphate solution or potassium sulphate solution may also be used for the same purpose in place of dilute sulphuric acid.

h) Action of disodium hydrogenphosphate solution

Disodium hydrogen phosphate solution is used in conjunction with solid ammonium chloride and excess ammonia solution to confirm the presence of zinc ions or magnesium ions.

Test	Observation	Deduction

To the test solution, add solid	A white precipitate soluble in	_
ammonium chloride, followed	excess dilute ammonia	Zn ²⁺ confirmed present.
by 3-4 drops of disodium	solution.	
hydrogen phosphate solution		
and then dilute ammonia	A white precipitate insoluble in	Mg ²⁺ confirmed present.
solution drop wise until in	excess dilute ammonia	
excess.	solution.	

i) Action of potassium chromate solution

Potassium chromate solution is used in conjunction with excess dilute sodium hydroxide solution to confirm the presence of both Pb²⁺ and Ba²⁺ ions.

Test	Observation	Deduction
To the test solution, add 2-3 drops of potassium chromate solution followed by dilute sodium hydroxide solution until	A yellow precipitate soluble in excess dilute sodium hydroxide solution forming a yellow solution.	Pb ²⁺ confirmed present.
in excess.	A yellow precipitate insoluble in excess dilute sodium hydroxide solution.	Ba ²⁺ confirmed present.

Note:1) The yellow precipitates are due to the formation of the insoluble chromates of Pb²⁺ and Ba²⁺which are yellow in colour.

Pb²⁺(aq) + CrO₄²⁻(aq)
$$\rightarrow$$
 PbCrO₄(s)
Ba²⁺(aq) + CrO₄²⁻(aq) \rightarrow BaCrO₄(s)

2) The sequence of observations for confirming the Pb²⁺ are due to the following other reaction: PbCrO₄(s) + 4OH⁻(aq) \rightarrow Pb(OH)₄²⁻(aq)+CrO₄²⁻(aq)

Colourless solution Yellow solution

$$PbCrO_4(s) + 4OH^-(aq) \rightarrow Pb(OH)_4^{2-}(aq) + CrO_4^{2-}(aq)$$
Colourless solution Yellow solution

3) Potassium chromate solution, however, may also be used in conjunction with dilute hydrochloric acid to confirm the presence of Pb²⁺, and also in conjunction with both dilute hydrochloric acid and dilute sulphuric acid to confirm the presence of Ba²⁺.

Test	Observation	Deduction
To the test solution, add	A yellow precipitate insoluble in	_
2-3 drops of potassium chromate solution	dilute hydrochloric acid.	Pb ²⁺ confirmed
followed by dilute hydrochloric acid.		present
To the test solution, add	A yellow precipitate soluble in	
2-3 drops of potassium chromate solution	dilute hydrochloric acid,	Ba ²⁺ confirmed
followed by dilute hydrochloric acid and	precipitate reappears on addition	present
then dilute sulphuric acid.	of dilute sulphuric acid.	

i) Action of ammonium oxalate solution

Ammonium oxalate solution is used in conjunction with dilute hydrochloric acid/dilute nitric acid or ethanoic acid. It is used to test for barium ions, Ba²⁺ and calcium ions, Ca²⁺.

Test Observation Deduction	on
----------------------------	----

To the test solution, add ammonium oxalate solution followed by dilute hydrochloric acid/nitric acid.	A white precipitate soluble in the acid.	Ba ²⁺ , Ca ²⁺
To the test solution, add ammonium oxalate solution	A white precipitate soluble in ethanoic acid.	Ba ²⁺ confirmed present.
followed by ethanoic acid.	A white precipitate insoluble in ethanoic acid.	Ca ²⁺ confirmed present.

k) Action of potassium hexacyanoferrate(III) solution (potassium ferricyanide solution)

The presence of Fe²⁺is confirmed by addition of 2-3 drops of potassium hexacyanoferrate(III) solution to the test solution. Formation of a **dark blue precipitate** confirms the presence of Fe²⁺.

$$Fe^{2+}(aq) + K^{+}(aq) + Fe(CN)_{6}^{3-}(aq) \rightarrow KFe[Fe(CN)_{6}](s)$$

Note: Dark blue precipitate

- 1) Addition of potassium hexacyanoferrate(III) solution to a solution containing Fe³⁺ results in formation of a brown solution.
- **2)** Addition of potassium hexacyanoferrate(III) solution can also be used to confirm the presence of Ni²⁺ ions. Formation of a brown precipitate confirms the presence of Ni²⁺ ions.

l) Action of potassium hexacyanoferrate(II) solution (potassium ferrocyanide solution)

The presence of Fe³⁺ is confirmed by use of potassium hexacyanoferrate(II)solution. Formation of a **dark blue precipitate** confirms the presence of Fe³⁺.

$$Fe^{3+}(aq) + K^{+}(aq) + Fe(CN)_{6}^{4-}(aq) \rightarrow KFe[Fe(CN)_{6}](s)$$

Note:

Dark blue precipitate

- 1) Addition of potassium hexacyanoferrate(III) solution to a solution containing Fe²⁺ results in formation of a pale blue precipitate (light blue precipitate).
- 2) Addition of potassium hexacyanoferrate(II) solution can also be used to confirm the presence of Cu²⁺ ions. Formation of a brown precipitate confirms the presence of Cu²⁺ ions.

m) Action of ammonium thiocyanate solution or potassium thiocyanate solution

Formation of a deep red solution(formation of a red solution) confirms the presence of Fe³⁺.

$$Fe(H_2O)_6^{3+}(aq) + SCN^{-}(aq) \rightarrow [Fe(H_2O)_5(SCN)]^{2+}(aq) + H_2O(1)$$

Deep red solution

n) Action of dimethyl glyoxime solution

Dimethyl glyoxime solution is used in confirming the presence of Ni²⁺. To the test solution, a few drops of dilute ammonia solution is added followed by dimethyl glyoxime solution. Formation of a bright red precipitate/red precipitate/pink precipitate confirms the presence of Ni²⁺.

Note: The presence of Ni²⁺ ions can also be confirmed by addition of potassium hexacyanoferrate(III) solution. Formation of a brown precipitate confirms the presence of Ni²⁺.

o) Action of concentrated nitric acid

When concentrated nitric acid added to a solution containing Fe^{2^+} , and the resultant solution warmed, the pale green solution turns brown on warming. This is because concentrated nitric acid is an oxidizing agent and therefore oxidizes Fe^{2^+} which appear pale green in solution to Fe^{3^+} which appear brown in solution.

$$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$$

Note: Concentrated nitric acid can also be used in conjunction with solid sodium bismuthate or lead(IV) oxide followed by warming/heating to confirm the presence of Mn²⁺ whereby a purple solution is formed. This is because Mn²⁺ which are very pale pink (basically appear colourless in solution) are oxidized to MnO₄⁻ which appear purple in solution.

$$2\text{Mn}^{2+}(\text{aq}) + 5\text{BiO}_3(\text{s}) + 14\text{H}^+(\text{aq}) \rightarrow 2\text{MnO}_4(\text{aq}) + 5\text{Bi}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(\text{l})$$

 $2\text{Mn}^{2+}(\text{aq}) + 5\text{PbO}_2(\text{s}) + 4\text{H}^+(\text{aq}) \rightarrow 2\text{MnO}_4(\text{aq}) + 5\text{Pb}^{2+}(\text{aq}) + 2\text{H}_2\text{O}(\text{l})$

p) Action of concentrated hydrochloric acid.

Concentrated hydrochloric acid can be used to confirm the presence of Cu²⁺. Addition of excess concentrated hydrochloric acid to a solution containing Cu²⁺, results in formation of a yellow solution. This is due to formation of a complex ion called the tetrachlorocuprate(II) ion, CuCl₄²⁻.

$$Cu^{2+}(aq) + 4Cl^{-}(aq) \rightarrow CuCl_{4}^{2-}(aq)$$

$$Yellow \ solution$$
OR $Cu(H_{2}O)_{6}^{2+}(aq) + 4Cl^{-}(aq) \rightarrow CuCl_{4}^{2-}(aq) + 6H_{2}O(l)$

$$Yellow \ solution$$
The presence of cobalt(II) ions, Co^{2+} can also be confirmed using concentrated hydrochloric

The presence of cobalt(II) ions, Co²⁺ can also be confirmed using concentrated hydrochloric acid. Addition of excess concentrated hydrochloric acid to a solution containing Co²⁺, results in formation of a blue solution. This is due to formation of a soluble complex called the tetrachlorocobaltate(II) ion, CoCl₄²⁻.

$$Co(H_2O)_6^{2+}(aq) + 4Cl^{-}(aq) \rightarrow CoCl_4^{2-}(aq) + 6H_2O(l)$$

Blue solution

Similarly, when concentrated hydrochloric acid is added to a solution containing Co²⁺, followed by solid ammonium thiocyanate and then pentanol(amylalcohol) and gentle shaking done, a blue solution in the organic layer (blue solution in upper layer) and a purple solution in the inorganic layer(purple solution in the lower layer) is observed. This also confirms the presence of Co²⁺.

Concentrated hydrochloric acid can also be used to confirm the presence of Pb²⁺.

When concentrated hydrochloric acid is added drop wise until in excess, to a solution containing lead(II) ions, a white precipitate is formed which dissolves in excess to form a pale yellow solution. The white precipitate is due to formation of insoluble lead(II) chloride while the pale yellow solution is due to formation of a soluble complex called the tetrachloroplumbate(II) ion, PbCl₄²⁻.

$$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$$
White precipitate
$$PbCl_{2}(s) + 2Cl^{-}(aq) \rightarrow PbCl_{4}^{2-}(aq)$$
Pale yellow solution

q) Action of concentrated sulphuric acid

A few drops(about 3 to 5 drops) of concentrated sulphuric acid are added to a solid followed by gentle warming. This is usually used to test for cations which have a different colour while in anhydrous form (in form of an anhydrous salt) and while in a hydrated form (in form of a hydrated salt). Such cations include Cu^{2+} and Co^{2+} .

Test	Observation	Deduction
To the unknown solid, add 2 to 3 drops of concentrated	The blue solid turns white	Hydrated Cu ²⁺ salt turns to anhydrous Cu ²⁺ salt.
sulphuric acid and warm gently.	The pink solid turns blue	Hydrated Co ²⁺ salt turns to anhydrous Co ²⁺ salt.

r)Action of hydrogen peroxide solution

Hydrogen peroxide solution, in the presence of excess alkali(e.g. excess sodium hydroxide solution), and then warming, oxidizes Cr^{3+} which appear green in solution to chromate(VI) ions, CrO_4^{2-} which appear yellow in solution.

$$2Cr^{3+}(aq) + 10OH^{-}(aq) + 3H_2O_2(aq) \rightarrow 2CrO_4^{2-}(aq) + 8H_2O(1)$$

When amylalcohol is added to the resultant solution, followed by dilute sulphuric acid, a blue solution in the organiclayer is formed.

s) Action of acidified potassium manganate(VII) solution

Tin(II) ions, Sn²⁺, turn acidified potassium manganate(VII) solution from purple to colourless. Sn²⁺ are strong reducing agents and therefore reduce manganate(VII) ions, MnO₄ which appear purple in solution, to Mn²⁺ which are very pale pink and hence basically appear colourless in solution. Meanwhile the Sn²⁺ are oxidized to Sn⁴⁺.

$$5\text{Sn}^{2+}(\text{aq}) + 2\text{MnO}_4(\text{aq}) + 16\text{H}^+(\text{aq}) \rightarrow 2\text{Mn}^{2+}(\text{aq}) + 5\text{Sn}^{4+}(\text{aq}) + 8\text{H}_2\text{O}(1)$$

t) Action of silver nitrate solution

Silver nitrate solution, when added to a solution of Sn^{2+} in the presence of excess dilute sodium hydroxide solution, a grey precipitate is formed. This is because in excess dilute sodium hydroxide solution, Sn^{2+} exists as the tetrahydroxostannate(II) ion which reduces the Ag^+ from silver nitrate to silver metal which appears as a grey precipitate. Meanwhile the Sn^{2+} are oxidized to Sn^{4+} .

$$Sn(OH)_4^{2-}(aq) + 2Ag^+(aq) \rightarrow Sn^{4+}(aq) + 2Ag(s) + 4OH^-(aq)$$

8.3.1.1 The "Just Acidic" Concept

This concept is used to test for cations using either addition of dilute sodium hydroxide or dilute ammonia solution drop wise until in excess and carrying out filtration, followed by drop wise addition of a dilute mineral acid to the resultant filtrate until there is no further change.

1) With dilute sodium hydroxide solution

Dilute sodium hydroxide solution is added drop wise until in excess to a test solution containing two cations, one of which forms a precipitate soluble in excess while the other cation forms a precipitate insoluble in excess dilute sodium hydroxide solution. The addition of excess dilute sodium hydroxide solution is followed by filtration and to the filtrate, a dilute mineral acid such as dilute nitric acid, dilute hydrochloric acid or dilute sulphuric acid is added drop by drop while shaking the test tube with its contents until the solution is "just acidic".

How does one tell that the filtrate has become just acidic?

When the dilute mineral acid is added to the filtrate, at first, a white precipitate is formed but with continued addition of the acid drop by drop, while shaking the test tube with its contents, the white precipitate dissolves in the acid to form a colourless solution and at this point when the precipitate has just dissolved in the acid to form a colourless solution, the solution is now "just acidic".

Explanation

The test solution contains one cation from this category of cations: Zn²⁺, Pb²⁺, Al³⁺, Sn²⁺ or Cr³⁺ and another from this category of cations: Ca²⁺, Mg²⁺, Ba²⁺, Mn²⁺, Cu²⁺, Fe²⁺, Ni²⁺, Fe³⁺ and Co²⁺.

a) The cation from the first category forms a precipitate with dilute sodium hydroxide solution, which dissolves in excess to form a solution and therefore, on filtration, this cation will be present in the filtrate in form of a soluble complex ion (in form of the tetrahydroxozincate(II) ion, tetrahydroxoplumbate(II) ion, tetrahydroxoaluminate(III) ionor tetrahydroxostannate(II) ion). On addition of the dilute mineral acid to the filtrate, a white precipitate is formed which dissolves in the acid to form a colourless solution if \mathbf{Zn}^{2+} , \mathbf{Pb}^{2+} , \mathbf{Al}^{3+} or \mathbf{Sn}^{2+} are present. This is due to the following reactions.

i) For
$$\mathbf{Zn}^{2+}$$
,
$$[Zn(OH)_4]^2(aq) + 2H^+(aq) \rightarrow Zn(OH)_2(s) + 2H_2O(l)$$
Tetrahydroxozincate(Il)ion White ppt of zinc hydroxide
$$Zn(OH)_2(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + 2H_2O(l)$$
Colourless solution of zinc ions Colourless solution of zinc ions

ii) For \mathbf{Pb}^{2+} ,
$$[Pb(OH)_4]^2(aq) + 2H^+(aq) \rightarrow Pb(OH)_2(s) + 2H_2O(l)$$
Tetrahydroxoplumbate(II)ion White ppt of lead(II) hydroxide
$$Pb(OH)_2(s) + 2H^+(aq) \rightarrow Pb^{2+}(aq) + 2H_2O(l)$$
Colourless solution of lead(II) ions

iii) For \mathbf{Al}^{3+} ,
$$[Al(OH)_4]^2(aq) + H^+(aq) \rightarrow Al(OH)_3(s) + H_2O(l)$$
Tetrahydroxoaluminate(III) ion White ppt of aluminium hydroxide
$$Al(OH)_3(s) + 3H^+(aq) \rightarrow Al^{3+}(aq) + 3H_2O(l)$$
Colourless solution of aluminium ions

iv) For \mathbf{Sn}^{2+} ,
$$[Sn(OH)_4]^2(aq) + 2H^+(aq) \rightarrow Sn(OH)_2(s) + 2H_2O(l)$$
Tetrahydroxostannate(II) ion White ppt of tin(II) hydroxide
$$Sn(OH)_2(s) + 2H^+(aq) \rightarrow Sn^{2+}(aq) + 2H_2O(l)$$
Colourless solution of tin(II) ins

Note: The above are the only key reactions that occur in case the mineral acid used is dilute nitric acid since the metal nitrates that can be formed by the free metal ions $(Zn^{2+}, Pb^{2+}, Al^{3+} \text{ or } Sn^{2+})$ are soluble and in such a case, formation of **a white precipitate which dissolves in the acid to form a colourless solution**indicates presence of Zn^{2+} , Pb^{2+} , Al^{3+} or Sn^{2+} . However, if the mineral acid used is dilute hydrochloric acid or dilute sulphuric acid, formation of **a white precipitate which dissolves in the acid to form a colourless solution**indicates presence of Zn^{2+} , Al^{3+} or Sn^{2+} . In this case, Pb^{2+} are excluded because apart from the reactions above, the free lead(II) ions formed when the solution turns just acidic, also undergo other important reactions where they combine with chloride ions from dilute hydrochloric

acid or sulphate ions from dilute sulphuric acid to form insoluble lead(II) chloride or lead(II) sulphate respectively, both of which appear as white precipitates.

$$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$$
white precipitate
$$Pb^{2+}(aq) + SO_{4}^{2-}(aq) \rightarrow PbSO_{4}(s)$$
white precipitate

This implies that iflead(II) ions were present in the filtrate, the white precipitate formed on addition of dilute hydrochloric acid or dilute sulphuric acid would never dissolve in the acid to form a colourless solution since lead(II) chloride and lead(II) sulphate do not react with acids.

Alternatively, on addition of the dilute mineral acid to the filtrate, a green precipitate (grey-green precipitate) is formed which dissolves in the acidto form a green solution. This occurs if Cr³⁺ are present. This is due to the following series of reactions:

b) The cation from the second category forms a precipitate of the metal hydroxide that is insoluble in excess and will be present in the residue after filtration. The insoluble precipitate may be white (ifCa²⁺, Mg²⁺ or Ba²⁺ are present), dirty white if Mn²⁺ are present, blue (ifCu²⁺ or Co²⁺ are present), pale green if Ni²⁺ are present, dirty green (if Fe²⁺ are present) or brown/reddish-brown (if Fe³⁺ are present).

$$\begin{array}{ll} Ca^{2+}(aq) + 2OH^{\text{-}}(aq) \to Ca(OH)_2(s) & Ni^{2+}(aq) + 2OH^{\text{-}}(aq) \to Ni(OH)_2(s) \\ Mg^{2+}(aq) + 2OH^{\text{-}}(aq) \to Mg(OH)_2(s) & Fe^{2+}(aq) + 2OH^{\text{-}}(aq) \to Fe(OH)_2(s) \\ Ba^{2+}(aq) + 2OH^{\text{-}}(aq) \to Ba(OH)_2(s) & Fe^{3+}(aq) + 3OH^{\text{-}}(aq) \to Fe(OH)_3(s) \\ Mn^{2+}(aq) + 2OH^{\text{-}}(aq) \to Mn(OH)_2(s) & Co^{2+}(aq) + 2OH^{\text{-}}(aq) \to Co(OH)_2(s) \\ Cu^{2+}(aq) + 2OH^{\text{-}}(aq) \to Cu(OH)_2(s) & Co^{2+}(aq) + 2OH^{\text{-}}(aq) \to Co(OH)_2(s) \\ \end{array}$$

2) With dilute ammonia solution

Dilute ammonia solution is added drop wise until in excess to a test solution containing two cations, one of which forms a white precipitate soluble in excess to form a colourless solution (if Zn^{2+} are present) or a pale blue precipitate soluble in excess to form a deep blue solution (if Cu^{2+} are present) while the second cation forms a precipitate insoluble in excess dilute ammonia solution (e.g Pb^{2+} , Al^{3+} , Mg^{2+} , Mn^{2+} , Cr^{3+} , Fe^{2+} or Fe^{3+}). The addition of excess dilute ammonia solution is followed by filtration and to the filtrate, a dilute mineral acid such as dilute nitric acid, dilute hydrochloric acid or dilute sulphuric acid is added drop by drop while shaking the test tube with its contents until the solution is "just acidic". Only three cations (Zn^{2+} , Cu^{2+} and Ni^{2+}) form precipitates that dissolve in excess dilute ammonia solution whereby, on filtration, the filtrate can either be a colourless solution due to the tetraamminezinc(II) ion, a deep blue solution due to the tetraamminecopper(II) ion or a blue solution due to the hexaamminenickel(II) ion.

How does one tell that the filtrate has become just acidic?

When the dilute mineral acid is added to the filtrate, at first, a white precipitate formed (if Zn^{2+} are present) or pale blue precipitate is formed (if Cu^{2+} are present) or a pale green precipitate is formed (if Ni^{2+} are present), but with continued addition of the acid drop by drop, while shaking the test tube with its contents, the white precipitate (if Zn^{2+} are present) dissolves in the acid to form a colourless solution, the pale blue precipitate (if Cu^{2+} are present) dissolves in the acid to form a blue solution or the

pale green precipitate dissolves in the acid to form a green solution (if Ni²⁺ are present) and at this point when the precipitate has just dissolved in the acid to form a solution, the solution is now "just acidic".

Explanation

The test solution contains one cation from this category of cations: Zn²⁺, Cu²⁺or Ni²⁺and another from this category of cations: Pb²⁺, Al³⁺, Mg²⁺, Ba²⁺, Mn²⁺, Co²⁺, Cr³⁺, Fe²⁺or Fe³⁺.

a) The cation from the first category forms a precipitate with dilute ammonia solution, which dissolves in excess to form a solution and therefore on filtration, this cation will be present in the filtrate in form of a soluble complex ion (in form of the tetraamminezinc(II) ion, tetraamminecopper(II) ion or hexaamminenickel(II) ion).

On addition of the dilute mineral acid to the filtrate, a white precipitate is formed which dissolves in the acid to form a colourless solution (if Zn²⁺are present), a pale blue precipitate is formed which dissolves in the acid to form a blue solution (if Cu²⁺are present) or a pale green precipitate soluble in the acid to form green solution (if Ni²⁺are present). This is due to the following series of reactions.

i) For
$$\mathbf{Zn}^{2+}$$
,
$$[Zn(NH_3)_4]^{2^+}(aq) + 2H^+(aq) + 2H_2O(l) \rightarrow Zn(OH)_2(s) + 4NH_4^+(aq)$$
Tetraamminezinc(II) ion
$$Zn(OH)_2(s) + 2H^+(aq) \rightarrow Zn^{2^+}(aq) + 2H_2O(l)$$
Colourless solution of zinc ions

ii) For \mathbf{Cu}^{2+} ,
$$[Cu(NH_3)_4]^{2^+}(aq) + 2H^+(aq) + 2H_2O(l) \rightarrow Cu(OH)_2(s) + 4NH_4^+(aq)$$
Tetraamminecopper(II) ion
$$Pale \ blue \ precipitate \ of \ copper(II) \ hydroxide$$

$$Cu(OH)_2(s) + 2H^+(aq) \rightarrow Cu^{2^+}(aq) + 2H_2O(l) \quad Blue \ solution \ of \ copper(II) \ ioin \ Shite \ precipitate \ of \ barium \ hydroxide$$
iii) For \mathbf{Ni}^{2+} ,
$$[Ni(NH_3)_6]^{2^+}(aq) + 4H^+(aq) + 2H_2O(l) \rightarrow Ni(OH)_2(s) + 6NH_4^+(aq)$$
Hexaamminenickel(II) ion
$$Pale \ green \ precipitate \ of \ nickel(II) \ hydroxide$$

$$Ni(OH)_2(s) + 2H^+(aq) \rightarrow Ni^{2^+}(aq) + 2H_2O(l)$$
Green solution of nickel(II) ions

b) The cation from the second category forms a precipitate of the metal hydroxide that is insoluble in excess dilute ammonia solution and will be present in the residue after filtration. The insoluble precipitate may be white (ifPb²⁺, Al³⁺,Sn²⁺, Mg²⁺,Ba²⁺ are present), dirty white (if Mn²⁺ are present), blue but turns pink on standing (if Co²⁺ are present), green/grey-green (if Cr³⁺ are present), dirty green (if Fe²⁺ are present) or brown/reddish-brown (if Fe³⁺ are present).

$$\begin{array}{lll} Pb^{2^{+}}(aq) + 2OH^{-}(aq) \to Pb(OH)_{2}(s) \\ AI^{3^{+}}(aq) + 3OH^{-}(aq) \to AI(OH)_{3}(s) & Co^{2^{+}}(aq) + 2OH^{-}(aq) \to Co(OH)_{2}(s) \\ Mg^{2^{+}}(aq) + 2OH^{-}(aq) \to Mg(OH)_{2}(s) & Cr^{3^{+}}(aq) + 3OH^{-}(aq) \to Cr(OH)_{3}(s) \\ Ba^{2^{+}}(aq) + 2OH^{-}(aq) \to Ba(OH)_{2}(s) & Fe^{2^{+}}(aq) + 2OH^{-}(aq) \to Fe(OH)_{2}(s) \\ Sn^{2^{+}}(aq) + 2OH^{-}(aq) \to Sn(OH)_{2}(s) & Fe^{3^{+}}(aq) + 3OH^{-}(aq) \to Fe(OH)_{3}(s) \\ Mn^{2^{+}}(aq) + 2OH^{-}(aq) \to Mn(OH)_{2}(s) & Fe^{3^{+}}(aq) + 3OH^{-}(aq) \to Fe(OH)_{3}(s) \\ \end{array}$$

Table showing a summary of preliminary and confirmatory tests forcommon cations

Cation	Preliminary/ Confirmatory tests	Test procedure	Observation
Zn ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The solid turns into a yellow residue when hot, turns white on cooling.
		To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.
		To the test solution, add sodium carbonate solution drop wise until in excess.	A white precipitate insoluble in excess.
	Confirmatory test	To the test solution, add solid ammonium chloride followed by 3-4 drops of disodium hydrogenphosphate solution and then dilute ammonia solution drop wiseuntil in excess.	A white precipitate soluble in excess ammonia solution to form a colourless solution.
		To the test solution, add potassium hexacyanoferrate(II) solution.	A white precipitate is formed.
Pb ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The solid turns into a reddish- brown residue when hot, turns yellow on cooling.
		To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A white precipitate insoluble in excess
		To the test solution, add sodium carbonate solution drop wise until in excess.	A white precipitate insoluble in excess.
		To the test solution, add 1-2 drops of dilute hydrochloric acid solution and warm; then cool under running tap water. Note: Sodium chloride solution can also be used in place of dilute hydrochloric acid in this test.	A white precipitate which dissolves on warming, precipitate reappears on cooling.
		To the test solution, add 1-3 drops of dilute sulphuric acid solution. Note: Sodium sulphate can also be used in place of dilute sulphuric acid for the same purpose in this test.	A white precipitate is formed.
	Confirmatory tests	To the test solution, add 2–3 drops of potassium iodide solution.	A yellow precipitate is formed.

		To the test solution, add potassium iodide solution drop wise until in excess.	A yellow precipitate soluble in excess to form a colourless
		solution drop wise until in eneess.	solution.
		To the test solution, add potassium	A yellow precipitate soluble in
		chromate solution followed by dilute	excess sodium hydroxide solution.
		sodium hydroxide solution until in excess.	A vallovy procipitate insolvhle in
		To the test solution, add potassium chromate solution followed by dilute	A yellow precipitate insoluble in the acid.
		hydrochloric acid.	the acid.
		To the test solution, add concentrated	A white precipitate soluble in
		hydrochloric acid drop wise until in excess.	excess to form a pale yellow
21			solution.
Al ³⁺	Preliminary	Heat two spatula endfuls of the solid in a	The solid forms a white residue.
	tests	dry test tube strongly until there is no	
		further change. To the test solution, add dilute sodium	A white precipitate soluble in
		hydroxide solution drop wise until in	excess to form a colourless
		excess.	solution.
		To the test solution, add dilute ammonium	A white precipitate insoluble in
		hydroxide solution drop wise until in	excess.
		excess.	
		To the test solution, add sodium carbonate	A white precipitate insoluble in
		solution drop wise until in excess.	excess with effervescence of a colourless gas which turns moist
			blue litmus paper red and limewater
			milky.
		To the test solution, add 1–2 drops of	
		Potassium iodide solution.	No observable change.
	Confirmatory	To the test solution, add 2-3drops of dilute	
	test	nitric acid are added, followed by 3-4	A blue lake solution is formed.
		drops of litmus solution and then dilute ammonia solution drop wise until in	
		excess.	
		To the test solution, add 2drops of litmus	
		solution, followed by about 1cm ³ of dilute	A pink colouration is formed.
		hydrochloric acid and then dilute ammonia	
		solution until the solution is just alkaline,	
Sn ²⁺	Dualiminary	then add Alizarin Reagent. Heat two spatula endfuls of the solid in a	
20	Preliminary tests	dry test tube strongly until there is no	The solid forms a white residue.
	lesis	further change.	The sond forms a write residue.
		To the test solution, add dilute sodium	A white precipitate soluble in
		hydroxide solution drop wise until in	excess to form a colourless
		excess.	solution.
		To the test solution, add dilute ammonium	A white precipitate insoluble in
		hydroxide solution drop wise until in	excess.
	Confirmatory	excess. To the test solution, add acidified	The purple solution turns
	tests	potassium manganate(VII) solution.	colourless.
	icsis		
			<u> </u>

		To the test solution, add iron(III) chloride	The brown/yellow solution turns
		solution.	green.
NH ₄ ⁺	Preliminary test	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	A colourless, pungent, chocking gas, which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid, is evolved. A white sublimate is formed.
	Confirmatory tests	To the test solution, add dilute sodium hydroxide solution drop wise until in excess and then warm.	No observable change, but on warming, a colourless pungent, chocking gas, which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid is evolved.
		Grind half a spatula endful of the solid with soda lime using the bottom of a test tube.	A colourless, pungent, chocking gas, which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid, is evolved.
Ca ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The solid forms a white residue.
		To the test solution, add sodium sulphate solution (or dilute sulphuric acid). To the test solution, add sodium hydroxide solution drop wise until in excess.	A white precipitate is formed. A white precipitate insoluble in excess.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	No observable change
		To the test solution, add sodium carbonate solution drop wise until in excess.	A white precipitate insoluble in excess.
	Confirmatory tests	To the test solution, add ammonium oxalate solution followed by dilute hydrochloric acid/nitric acid.	A white precipitate soluble in the acid.
		To the test solution, add ammonium oxalate solution followed by ethanoic acid.	A white precipitate insoluble in ethanoic acid.
		To the test solution, add potassium chromate solution followed by excess ethanoic acid.	A yellow precipitate soluble in excessethanoic acid.
		To the test solution, add potassium chromate solution followed by dilute sodium hydroxide solution drop wise until in excess.	A yellow precipitate soluble in excess dilute sodium hydroxide solution.
Mg ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The solid forms a white residue.

		To the test solution, add dilute sodium	A white precipitate insoluble in
		hydroxide solution drop wise until in	excess.
		excess.	
		To the test solution, add dilute ammonium	A white precipitate insoluble in
		hydroxide solution drop wise until in	excess.
		excess.	
		To the test solution, add Sodium carbonate	A white precipitate insoluble in
		solution drop wise until in excess.	excess.
		To the test solution, add sodium sulphate	No observable change.
		solution (or dilute sulphuric acid).	
	Confirmatory	To the test solution, add solid ammonium	A white precipitate insoluble in
	test	chloride followed by 3-4 drops of	excess ammonia solution.
		disodium hydrogenphosphate solution and	
		then dilute ammonia solution drop wise	
2.		until in excess.	
Ba ²⁺	Preliminary	Heat two spatula endfuls of the solid in a	
	tests	dry test tube strongly until there is no	The solid forms a white residue.
		further change.	
		To the test solution, add dilute sodium	A white precipitate insoluble in
		hydroxide solution drop wise until in	excess.
		excess.	A 12
		To the test solution, add dilute ammonium	A white precipitate insoluble in
		hydroxide solution drop wise until in	excess.
		excess.	A valeito muosimitoto is impolable in
		To the test solution, add sodium carbonate solution drop wise until in excess.	A white precipitate is insoluble in
		To the test solution, add sodium sulphate	excess. A white precipitate is formed.
		solution (or dilute sulphuric acid).	A writte precipitate is formed.
	Confirmatory	To the test solution, add ammonium	A white precipitate soluble in
		oxalate solution followed by dilute	the acid.
	tests	-	the acid.
		hydrochloric acid/nitric acid.	A11
		To the test solution, add potassium	A yellow precipitate insoluble in
		chromate solution, followed by dilute sodium hydroxide solution drop wise until	excess Sodium hydroxide solution.
		in excess.	
		To the test solution, add potassium	A yellow precipitate soluble in
		chromate solution, followed by dilute	dilute hydrochloric acid, precipitate
		hydrochloric acid and then dilute sulphuric	reappears on addition of dilute
		acid.	sulphuric acid.
		To the test solution, add ammonium	A white precipitate soluble in
		oxalate solution followed by ethanoic	ethanoic acid.
		acid.	ethanole acid.
Cu ²⁺	Preliminary	Heat two spatula endfuls of the solid in a	The blue/green solid turns into a
Cu	1	dry test tube strongly until there is no	black residue.
	tests	further change.	orack residue.
		To the test solution, add sodium carbonate	A green precipitate insoluble in
		solution drop wise until in excess.	excess or blue precipitate insoluble
		area area more and in excess.	in excess.
	1	I .	L

		To the test solution, add dilute sodium	A pale blue precipitate insoluble in
		hydroxide solution drop wise until in	excess (turns black on heating).
		excess (and heat).	Note: The black solid is copper(II) oxide.
		To the test solution, add a little zinc	A brown solid is formed.
		powder and leave to stand.	Blue solution turns colourless.
		Note: Magnesium powder can also be used in place of zinc powder.	Note: The brown solid (reddishbrown solid) is copper metal, formed by the displacement reaction (also redox reaction) below. $Cu^{2+}(aq)+Zn(s) \rightarrow Cu(s)+Zn^{2+}(aq)$ The colourless solution is due to
	Confirmatory tests	To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	Zn ²⁺ (aq). A pale blue precipitate soluble in excess to form a deep blue solution.
		To the test solution, add 3–4 drops of potassium iodide solution.	A white precipitate in a brown solution (OR a white precipitate stained brown).
		To the test solution, add 3–4 drops of potassium iodide solution followed by sodium thiosulphate solution.	A white precipitate in a brown solution, brown solution turns colourless but white precipitate remains on addition of sodium thiosulphate solution.
		To the test solution, add 2–3drops of potassium hexacyanoferrate(II) solution.	A brown precipitate is formed.
		To the test solution, add excess concentrated hydrochloric acid.	A yellow solution is formed.
Fe ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The pale green solid turns into a brown residue.
		To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A dirty green precipitate insoluble in excess, turns brown on standing in air.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A dirty green precipitate insoluble in excess, turns brown on standing in air.
		To the test solution, add sodium carbonate solution drop wise until in excess.	A dirty green precipitate insoluble in excess, turns brown on standing in air.
	Confirmatory tests	To the test solution, add 3-4 drops of potassium hexacyanoferrate(III) solution.	A dark blue precipitate is formed.
		To the test solution, add concentrated nitric acid and warm.	Pale green solution turns brown.

		To the test solution, add hydrogen peroxide solution and warm.	Pale green solution turns brown.
Fe ³⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The brown/yellow solid forms a brown residue.
		To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A brown/reddish-brown/rusty brown precipitate insoluble in excess.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A brown/reddish-brown/rusty brown precipitate insoluble in excess
		To the test solution, add sodium carbonate solution drop wise until in excess.	A brown/reddish-brown/rusty brown precipitate insoluble in excess with effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky.
	Confirmatory tests	To the test solution, add 3-4 drops of Potassium hexacyanoferrate(II) solution.	A dark blue precipitate is formed.
		To the test solution, add ammonium thiocyanate solution or potassium thiocyanate solution.	A deep red solution is formed.
Ni ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The pale green solid forms a black residue.
		To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A pale green precipitate insoluble in excess.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A pale green precipitate soluble in excess to form a blue solution.
		To the test solution, add sodium carbonate solution drop wise until in excess.	A pale green precipitate insoluble in excess.
	Confirmatory tests	To the test solution, add a little dilute ammonia solution followed by dimethyl glyoxime solution.	A bright red precipitate/red precipitate/pink precipitate is formed.
		To the test solution, add a few drops of potassium hexacyanoferrate(III) solution.	A brown precipitate is formed.
Cr ³⁺	Preliminary tests	To the test solution, add dilute Sodium hydroxide solution drop wise until in excess.	A green precipitate (grey-green precipitate) soluble in excess to form a green solution.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A green precipitate(grey-green precipitate) insoluble in excess.
		To the test solution, add sodium carbonate solution drop wise until in excess.	A green precipitate (blue-green precipitate)insoluble in excess with effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky.

	Confirmatory tests	To the test solution, add dilute sodium hydroxide solution drop wise until in excess, followed by hydrogen peroxide solution and warm.	A green precipitate soluble in excess sodium hydroxide solution to form a green solution, turns yellow on addition of hydrogen peroxide solution.
		To the test solution, add excess sodium hydroxide solution, followed by hydrogen peroxide solution and warm, then add amylalcohol followed by dilute sulphuric acid.	A green solution which turns yellow on warming, and then a blue solution in the organic layer.
		To the test solution, add lead(II) nitrate or lead(II) ethanoate solution followed by dilute sodium hydroxide solution drop wise until in excess.	A yellow precipitate soluble in excess sodium hydroxide solution.
Mn ²⁺	Preliminary tests	To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A dirty white precipitate insoluble in excess, turns brown on standing.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A dirty white precipitate insoluble in excess, turns brown on standing.
		To the test solution, add sodium carbonate solution drop wise until in excess.	A dirty white precipitate insoluble in excess, turns brown on standing.
	Confirmatory	To the test solution, add a few drops of	in excess, turns or wir on standing.
	tests	concentrated nitric acid followed by a little solid sodium bismuthate and warm gently.	A purple solution is formed.
		To the test solution, add a few drops of concentrated nitric acid followed by lead(IV) oxide and warm gently.	A purple solution is formed.
		To the test solution, add a few drops of hydrogen peroxide solution followed by dilute sodium hydroxide solution drop wise until in excess.	A dark brown precipitate with rapid effervescence of a colourless gas that relights a glowing splint.
		Fuse/meltthe unknown solid with a mixture of solid sodium carbonate and potassium nitrate.	A green mass is formed.
Co ²⁺	Preliminary tests	Heat two spatula endfuls of the solid in a dry test tube strongly until there is no further change.	The solid forms a black residue.
		To the test solution, add dilute sodium hydroxide solution drop wise until in excess.	A blue precipitate insoluble in excess, turns pink on standing in air, turns brown on further standing in air.
		To the test solution, add dilute ammonium hydroxide solution drop wise until in excess.	A blue precipitate insoluble in excess (it may turn pink on standing and may turn brown on further standing in air).
		To the test solution, add sodium carbonate solution drop wise until in excess.	Pink-violet precipitate insoluble in excess.

Confirmatory tests	To the test solution, add solid ammonium thiocyanate followed by amyl alcohol.	A blue solution in the organic layer.
	To the test solution, add concentrated ammonia solution drop wise until in excess followed by a few drops of hydrogen peroxide solution.	A green precipitate soluble in excess concentrated ammonia solution to form a brown solution and rapid effervescence of a colourless gas on addition of hydrogen peroxide solution.
	To the test solution, add concentrated hydrochloric acid, followed by solid ammonium thiocyanate and then pentanol (amylalcohol) and shake gently.	A blue solution in the organic layer(blue solution in upper layer) and a purple solution in the inorganic layer(purple solution in the lower layer).
	To the test solution, add excess concentrated hydrochloric acid.	A blue solution is formed.

8.3.2Reagents used in the identification of Anions in Solids and Solutions

The major reagents used in detection of anions in solution include: dilute hydrochloric acid, dilute nitric acid, dilute sulphuric acid, concentrated nitric acid, concentrated sulphuric acid, freshly prepared iron(II) sulphate solution, lead(II) nitrate solution/lead(II) acetate solution, barium nitrate solution/barium chloride solution, acidified silver nitrate solution, silver nitrate solution with excess ammonia solution, aluminium metal, zinc metal, acidified potassium manganate(VII) solution, ethanol, chloroform, iodine solution,magnesium sulphate solution/magnesium nitrate solution/magnesium chloride solution and many other reagents.

a) Action of dilute hydrochloric acid

The dilute hydrochloric acid may be either added to a solid or to a test solution. In case there is no reaction at room temperature, some gentle warming may be required.

Test	Observation	Deduction
i) To the unknown solid, add 2cm ³ of dilute hydrochloric acid.	Effervescence of a colourless gas which turns moist blue litmus paper pink/red and limewater milky(forms a white precipitate with calcium hydroxide solution).	CO ₂ (g) evolved CO ₃ ²⁻ (or HCO ₃ ⁻) present.
ii)To the unknown solid, add 2cm ³ of dilute hydrochloric acid and warm.	No observable change at room temperature, but on warming, there is evolution of a colourless, pungent gas which turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless.	SO ₂ (g) evolved. SO ₃ ²⁻ present.

iii) To the test solution, add	Cream precipitate/yellow precipitate;	S(s) precipitated.
2cm ³ of dilute hydrochloric acid and warm.	On warming, there is evolution of a colourless, pungent gas which turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless.	SO ₂ (g) evolved. S ₂ O ₃ ²⁻ confirmed.present
iv)To the unknown solid, add 2cm ³ of dilute hydrochloric acid and warm.	No observable change even on warming	SO ₄ ²⁻ probably present

b) Action of dilute nitric acid

Just like dilute hydrochloric acid, dilute nitric acid can be effectively used to test for the presence of carbonate ions, CO_3^{2-} as in test (a)(i) above.

Note:Dilute nitric acid can also be used to confirm the presence of the chloric(I) ion/hypochlorous ion, ClO⁻. Addition of dilute nitric acid to a test solution containing ClO⁻, results in evolution of chlorine gas.

Test	Observation	Deduction
To the test solution, add dilutenitric acid.	A greenish-yellow gas which turns moist blue litmus paper red and bleaches it.	ClO confirmed present

c) Action of dilute sulphuric acid

Similarly, dilute sulphuric acid can also be used effectively to test for the presence of carbonate ions, CO_3^{2-} as in test (a)(i) above. However, in case dilute sulphuric acid is added to a test solution and a white precipitate is formed, then Pb^{2+} , Ca^{2+} or Ba^{2+} ions are likely to be present in the compound under analysis. Therefore, dilute sulphuric acid is used to test for carbonates usually when the cations present in the sample under analysis are neither Pb^{2+} , Ca^{2+} nor Ba^{2+} .

Apart from testing for carbonate ions, dilute sulphuric acid can also be used to test for the presence of nitrite ions, NO₂. To a cold solution suspected to contain nitrite ions, iron(II) sulphate solution is added followed by dilutesulphuric acid. Formation of a dark brown complex confirms thepresence of the NO₂.

Test	Observation	Deduction
To the cold test solution, add iron(II) sulphate solution followed by dilute sulphuric acid.	A dark brown complex is formed.	NO ₂ confirmed present

Dilute sulphuric acid, when used together with hydrogen peroxide solution, can be used to confirm the presence of the chromate(VI) ion, CrO_4^{2-} .

Test	Observation	Deduction
To the test solution, add dilute	Yellow solution turns orange and	2
sulphuric acid followed by		CrO ₄ ² -confirmed present
hydrogen peroxide solution.	which quickly fades, leaving behind	
	a green solution.	

d) Action of concentrated sulphuric acid

Concentrated sulphuric acid is mainly added to unknown solids rather than test solutions. In this way, a few drops (2 to 3 drops) of the concentrated sulphuric acid are added to the solid in a test tube. Concentrated sulphuric acid is used to test for anions such as CO_3^{2-} , CI^- , Br^- , Γ , CH_3COO^- and SO_3^{2-} . Unlike the CO_3^{2-} which reacts with the concentrated sulphuric acid at room temperature, the rest only react when addition of the concentrated sulphuric acid is followed by gentle warming. In each case, a gas or a mixture of gases is given off/evolved. The gas or mixture of gases evolved depends on the type of anion present in the solid.

For a CO₃²⁻, carbon dioxide gas is given off, for the Cl⁻, hydrogen chloride gas is evolved, for the Br⁻, bromine gas and hydrogen bromide gas are evolved, for the l⁻, Iodine vapour and hydrogen iodide gas are given off, for CH₃COO⁻, acetic acid fumes are given off while for SO₃²⁻, sulphur dioxide gas is given off. Concentrated sulphuric acid can be added to a test solution, particularly when used together with a freshly prepared solution of iron(II) sulphate while testing for the nitrate ions(**The brown ring test**). To the test solution in a test tube, add a freshly prepared solution of iron(II) sulphate. In the brown ring test, the test tube containing the solution suspected to contain a nitrate is held in a slanting position and then concentrated sulphuric acid added drop by drop down the walls of the test tube. Formation of a brown ring at the interface of the acid and aqueous layer confirms the presence of a nitrate. Avoid shaking. In the brown ring test, it is important to avoid boiling because this might turn out to be explosive hence causing accidents. The brown ring formed is of a complex ion formed as shown below.

$$3Fe^{2+}(aq) + NO_3(aq) + 4H^+(aq) \rightarrow 3Fe^{2+}(aq)+NO(g)+2H_2O(l)$$

{ B r o w n R i n g }

Note:

- 1)In a similar way, addition of a few drops of concentrated sulphuric acid to a solid containing a nitrate, NO_3 , followed by gentle warming, results in evolution of brown fumes of nitrogen dioxide gas.
- 2) Also, addition of a few copper turnings to a solution containing a nitrate, NO₃, followed by a few drops of concentrated sulphuric acid and gentle warming, results in evolution of brown fumes of nitrogen dioxide gas.
- **3)**When to a solid containing a chloride, manganese(IV) oxide is added followed by a few drops (2-3 drops) of concentrated sulphuric acid, chlorine gas is evolved (chlorine gas is a greenish-yellow gas).

Test	Observation	Deduction
	Rapid effervescence of a colourless gas which turns	CO ₂ (g) evolved
	moist blue litmus paper red/pink and turns limewater	CO ₃ ²⁻ confirmed
To the unknown solid,	milky(forms a white precipitate with calcium hydroxide	present.
add 3 to 5 drops of	solution).	
concentrated sulphuric	Effervescence of misty fumes with a chocking smell,	
and warm gently.	which turn moist blue litmus paper red and form dense	HCl(g) evolved
	white fumes with concentrated ammonia.	Cl ⁻ suspected.

	Effervescence of a brown vapour which turns moist blue litmus paper red and bleaches it.	$Br_2(g)$ evolved.
	White fumes which turn moist blue litmus paper red.	HBr(g) evolved. Br suspected.
	Effervescence of a purple vapour which turns moist	Di suspecteu.
	blue litmus paper red and sublimes to form a black/purple/purplish-black solid.	$I_2(g)$
	White fumes which turn moist blue litmus paper red.	HI(g) I suspected.
	Effervescence of white fumes with a sharp vinegar smell and turn moist blue litmus paper red.	Acetic acid fumes CH ₃ COO suspected.
	Effervescence of a colourless gas with a pungent	suspectus.
	smell, which turns moist blue litmus paper red and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless.	SO ₂ (g) evolved. SO ₃ ²⁻ suspected.
	Brown fumes with a pungent smell, which turn moist	NO ₂ (g) evolved.
	blue litmus paper red.	NO ₃ suspected.
To the unknown solid,	Effervescence of a greenish-yellow gas which turns	$Cl_2(g)$ evolved.
add half a spatula endful	moist blue litmus paper red and bleaches it.	Cl suspected.
of manganese(IV) oxide followed by 2-3 drops of	Effervescence of a brown vapour which turns moist blue litmus paper red and bleaches it.	Br ₂ (g) evolved. Br ⁻ suspected.
concentrated sulphuric acid and warm gently.	Effervescence of a purple vapour which turns moist blue litmus paper red and subimes to form a black/purple/purplish-black solid.	I ₂ (g) evolved. Γ suspected.
To the test solution, add a few pieces of copper turnings followed by 3-4 drops of concentrated sulphuric acid and warm gently.	Brown fumes with a pungent smell, which turn moist blue litmus paper red.	NO ₂ (g) evolved NO ₃ suspected
To the test solution in a test tube, add a freshly prepared solution of iron(II) sulphate. Hold the test tube in a slanting position and then add concentrated sulphuric acid drop wise down the walls of the test	A brown ring is formed at the interface of the acid and aqueous layer.	NO ₃ confirmed present
tube.(Avoid shaking).		

e) Action of Devarda's Alloy

Devarda's Alloy is a uniform mixture of zinc, aluminium and copper.

To the test solution suspected to contain a nitrate, Devarda's Alloy is added followed by excess dilute sodium hydroxide solution and boil the mixture. Evolution of ammonia gas confirms the presence of a nitrate ion, NO₃⁻.

The zinc metal in Devarda's alloy reacts according to the equation below.

$$4Zn(s) + NO_3(aq) + 7OH(aq) + 6H_2O(l) \rightarrow 4Zn(OH)_4(aq) + NH_3(g)$$

Test	Observation	Deduction
To the test solution, add	A colourless, pungent, chocking gas	
Devarda's Alloy followed by	1 1	NH ₃ (g) evolved
excess dilute sodium	and forms dense white fumes with	NO ₃ confirmed present
hydroxide solution and boil.	concentrated hydrochloric acid.	

Note: In case Devarda's Alloy is not available, either zinc metal powder or aluminium metal powder is added to the test solution followed by excess dilute sodium hydroxide solution and the mixture warmed. Evolution of ammonia gas confirms the presence of a nitrate.

Test	Observation	Deduction
To the test solution, add zinc metal powder or aluminium metal powder followed by excess dilute sodium hydroxide solution and warm.	A colourless, pungent, chocking gas which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid.	NH ₃ (g) evolved NO ₃ -confirmed present

Note: Then itrite ion, NO_2 can also be tested for in a similar way using Devarda's Alloy or alternatively, zinc metal powder or aluminium metal powder whereby the observation is the same (i.e. ammonia gas is given off) just like it is in the test for a nitrate, NO_3 .

f) Action of lead(II) nitrate solution (or lead(II) acetate solution)

Lead(II) nitrate solution (or lead(II) acetate solution) is used to test for sulphates, sulphites, oxalates, chlorides, bromides, iodides, carbonates and hypochlorites. The solution may be used in isolation or in combination with dilute nitric acid.

Test	Observation	Deduction
To the test solution, add	A white precipitate.	SO ₄ ² -, SO ₃ ² -, Cl ⁻ , Br ⁻ , C ₂ O ₄ ² -, CO ₃ ² -, PO ₄ ³ -, ClO ⁻ .
lead(II) nitrate solution.		$C_2O_4^{2-}$, CO_3^{2-} , PO_4^{3-} , CIO^{-} .
To the test solution, add	A yellow precipitate.	I ⁻ , CrO ₄ ²⁻
lead(II) nitrate solution		
To the test solution, add	A white precipitate soluble on	
lead(II) nitrate solution and	warming to form a colourless	Cl ⁻
warm (then cool).	solution (precipitate reappears on	
Note: Cooling is optional.	cooling).	
To the test solution, add	A white precipitate insoluble on	
lead(II) nitrate solution and	warming.	SO_4^{2-}, SO_3^{2-}
warm.		

To the test solution, add	A white precipitate insoluble in the	SO ₄ ²⁻ , Cl ⁻ , Br ⁻
lead(II) nitrate solution,	acid.	
followed by dilute nitric acid.		
To the test solution, add	A white precipitate soluble in the acid	$CO_2(g)$ evolved.
lead(II) nitrate solution,	with effervescence of a colourless gas	_
followed by dilute nitric acid.	which turns moist blue litmus paper	CO ₃ ² -present.
	pink/red and limewater milky	
	(forms a white precipitate with calcium	
	hydroxide solution).	
To the test solution, add	A white precipitate soluble in the acid	$SO_3^{2-}, C_2O_4^{2-}, PO_4^{3-}$
lead(II) nitrate solution,	without effervescence.	
followed by dilute nitric acid.		

g) Action of Barium nitrate solution

Barium nitrate solution may be used in isolation e.g. in testing for $CrO_4^{2^-}$. In most cases, however, Barium nitrate solution issued together with dilute nitric acid. The test procedure is such that 2 to 3drops of Barium nitrate solution are added to the test solution of the unknownfollowed by a few drops of dilute nitric acid. When combined with dilute nitric acid, Barium nitrate solution is used to test for $SO_4^{2^-}$, $SO_3^{2^-}$, $C_2O_4^{2^-}$, $CO_3^{2^-}$, $PO_4^{3^-}$.

Note: The above combination, however, is mainly used to confirm the presence of a SO_4^{2-} .

Test	Observation	Deduction
To the test solution, add Barium nitrate solution.	A yellow precipitate is formed.	CrO ₄ ²⁻ confirmed present.
To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A white precipitate, insoluble in the acid.	SO ₄ ²⁻ confirmed present.
To the test solution, add dilute nitric acid followed by Barium nitrate solution.	A white precipitate is formed.	SO ₄ ²⁻ confirmed present
To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A white precipitate soluble in dilute nitric acidwithout effervescence.	SO ₃ ²⁻ , C ₂ O ₄ ²⁻ , PO ₄ ³⁻
To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid with effervescence of a colourless gas which turns moist blue litmus paper red/pink and limewater milky(forms a white precipitate with calcium hydroxide solution).	CO ₂ (g) given off CO ₃ ² -present
To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A yellow precipitate which dissolves in the acid to form an orange solution.	CrO ₄ ²⁻

To the test solution, add Barium		
nitrate solution followed by dilute	No observable change.	$Cl^{-}, S_2O_3^{2-}$
nitric acid.		

h) Action of Barium chloride solution

Barium chloride solution is usually used together with dilute hydrochloric acid. This combination is basically used to test for the same anions as in part (f) above except that it can not be used to test for the chloride since the dilute hydrochloric acid itself contains a chloride. Otherwise, the observations and deductions are the same as in (f) above only that in case a SO_3^{2-} is present, addition of Barium chloride solution followed by dilute hydrochloric acid gives a white precipitate soluble in the acid with evolution of a colourless, pungent gas which turns moist blue litmus paper red and turns acidified potassium dichromate solution from orange to green. (The gas evolved is Sulphur dioxide).

i)Action of silver nitrate solution with dilute nitric acid

Silver nitrate solution can be used in isolation (alone) but in most cases, it is used when acidified. Silver nitrate is usually acidified using dilute nitric acid. This combination of reagents is used to test for the presence of Cl^{-} , Br^{-} , I^{-} , SO_3^{2-} , $C_2O_4^{2-}$, CO_3^{2-} , CrO_4^{2-} , PO_4^{3-} , e.t.c. The silver nitrate solution may be added first followed by the acid or the acid may be added first followed by silver nitrate solution.

Test	Observation	Deduction
	A white precipitate insoluble in the acid.	Cl ⁻ confirmed present
	A cream precipitate insoluble in the acid.	Br ⁻
	A pale yellow precipitate insoluble in the	I-
	acid.	
	A pale yellow precipitate soluble in the acid	_
	without effervescence.	PO_4^{3-}
To the test solution,	A white precipitate dissolves in the acid with	
add a few drops of	effervescence of a colourless gas which turns	$CO_2(g)$ evolved
silver nitrate solution	moist blue litmus red and limewater	CO_3^{2} present
followed by dilute	milky(forms a white precipitate with calcium	
nitric acid.	hydroxide solution).	
	A white precipitate soluble in the acid without	2
	effervescence.	$C_2O_4^{2-}$
	A red precipitate soluble in the acid with no	2
	effervescence to form an orange solution.	CrO ₄ ²⁻ SO ₄ ²⁻
	No observable change.	-
To the test solution,	A white precipitate is formed.	Cl ⁻ confirmed present
add dilute nitric acid	A pale yellow precipitate is formed.	I ⁻
followed by a few	A cream precipitate (very pale yellow	Br ⁻
drops of silver nitrate	precipitate).	2
solution.	No observable change.	SO_4^{2-}

j) Action of silver nitrate solution with excess ammonia solution

Test	Observation	Deduction
	A white precipitate soluble in excess ammonia solution, forming a colourless solution.	Cl ⁻ confirmed present
To the test solution, add a few drops of	A pale yellow precipitate insoluble in excess ammonia solution.	I ⁻
silver nitrate solution followed by ammonia	A cream precipitate dissolves with difficulty in excess ammonia solution.	Br ⁻
solution drop wise until in excess.	A white precipitate solublein excess ammonia solution.	C ₂ O ₄ ²⁻ , CO ₃ ²⁻
	A white precipitate insoluble in excess ammonia solution.	SO ₃ ²⁻
	A red precipitate soluble in excess ammonia solution to form a yellow solution.	CrO ₄ ²⁻
	No observable change.	SO_4^{2-}

Note: When to a solution containing Cl⁻ions, silver nitrate solution is added, followed by excess ammonia solution, the sequence of chemical reactionsthat occur is as shown below:

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

White precipitate of silver chloride

 $AgCl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^{+}(aq) + Cl^{-}(aq)$

Colourless solution of the diamminesilver(1) ion

k) Action of magnesium sulphate/magnesium nitrate/magnesium chloride solution

All the three magnesium salts indicated above are soluble salts. Any of them can be used to differentiate between a soluble carbonate from a soluble hydrogenearbonate.

Test	Observation	Deduction
To the test solution, add		_
magnesium sulphate solution.	A white precipitate is formed.	CO ₃ ²⁻ present
	No observable change.	HCO ₃ present

The observations above are based on the fact that in case the carbonate ion is present in the test solution, the magnesium ions react with the carbonate to form the insoluble magnesium carbonate which appears as a white precipitate.

$$Mg^{2+}(aq) + CO_3^{2-}(aq) \rightarrow MgCO_3(s)$$
White precipitate

In case the Hydrogencarbonate ion is present in the test solution, the Magnesium ions react with the hydrogencarbonate ions to form soluble Magnesium hydrogencarbonate which is appears as a colourless solution.

$$Mg^{2^+}(aq) + 2HCO_3^-(aq) \rightarrow Mg(HCO_3)_2(aq)$$
Colourless solution

l)Action of acidified potassium manganate(VII) solution

Acidifiedpotassium manganate(VII) solution/Acidified potassium permanaganate solution is a powerful oxidizing agent. A series of reducing agents can therefore reduce the acidified potassium manganate(VII) solution, turning it from a purple solution to a colourless solution. The purple colour is due to the manganate(VII) ions while the seemingly colourless solution is due to the manganese(II) ions which are very pale pink in solution, hence appearing colourless. Therefore, acidified potassium manganate(VII) solution is used to test for anions that are reducing agents such as $C_2O_4^{2-}$, SO_3^{2-} , $S_2O_3^{2-}$, NO_2^{-} , CI^- , Br^- and I^- . All these anions therefore reduce MnO_4^{-} to Mn^{2+} .

Test	Observation	Deduction
To the test solution, add acidified	Purple solution turns	SO_3^{2-} , $S_2O_3^{2-}$, NO_2^{-} , Cl^- , Br^- , l^-
potassium manganate(VII) solution.	colourless.	
To the test solution, add acidified	Purple solution turns	$C_2O_4^{2-}$ confirmed present.
potassium manganate(VII) solution	colourless on heating.	
and heat.	_	

Note: Oxalate ions, $C_2O_4^2$ only react with acidified potassium manganate(VII) solution when heated.

m) Action of neutral iron(III) chloride solution

Neutral iron(III) chloride solution is used to confirm the presence of ethanoate ions, CH₃COO⁻. Formation of a red colouration confirms the presence of CH₃COO⁻.

However, when addition of neutral iron(III) chloride solution to a solution containing CH₃COO⁻, is followed by boiling, a brown precipitate is formed on boiling.

$$CH_3COO^{-}(aq) + H_2O(1) \rightleftharpoons CH_3COOH(aq) + OH^{-}(aq)$$

 $Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_3(s)$
**Brown precipitate*

OR: $Fe^{3+}(aq) + 3CH_3COO^{-}(aq) \rightarrow (CH_3COO)_3Fe(s)$
**Brown precipitate*

Test	Observation	Deduction
To the test solution, add neutral	A red colouration is formed.	CH ₃ COO confirmed
iron(III) chloride solution.		present.
To the test solution, add neutral	Abrown precipitate (or	
iron(III) chloride solution and	reddish-brown precipitate) is	CH ₃ COO confirmed
boil/heat.	formed.	present.

n) Action of Chloroform

Chloroform is used in confirming the presence of both the Br and Γ . The chloroform is used in combination with bleaching powder (or solution of a bleaching agent) together with dilute nitric acid.

Test	Observation	Deduction
To the test solution, add a little	An orange solution in the	
bleaching powder (or add 1cm ³ of	organic layer/lower layer.	Br confirmed present.
a solution of a bleaching agent),	(orange lower layer).	_
followed by 1cm ³ of dilute nitric	Purple solution in the	
acid and then 1cm ³ of chloroform	organic layer/lower layer.	I⁻ confirmed present.
and shake gently.	(purple lower layer).	_

Note: A solution of a bleaching agent in the form of sodium hypochlorite e.g. JIK can work effectively for the above stated chemical test.

o) Action of ethanol

Ethanol is used in combination with concentrated sulphuric acid to test for ethanoate ions. Ethanol and a few drops of concentrated sulphuric acid are added to a test solution containing the ethanoate ion, CH₃COO. A sweet, fruity smell confirms the presence of CH₃COO. This chemical test is based on the esterification reaction (Formation of an ester from an alcohol, a carboxylic acid and a concentrated mineral acid, which is usually concentrated sulphuric acid).

Test	Observation	Deduction
To the test solution, add 1cm ³ of		
Ethanol followed by 3 to 5 drops	A sweet, fruity smell is	Esterification reaction.
of concentrated sulphuric acid and	detected.	
warm. Pour the product in a test		CH ₃ COO ⁻ confirmed present.
tube containing water.		_

p) Action of iodine solution

lodine solution is commonly used to test for anions such as SO_3^{2-} , $S_2O_3^{2-}$, NO_2^{-} and $C_2O_4^{2-}$. These anions are reducing agents which reduce aqueous iodine to iodide ions. Hence addition of iodine solution to a test solution containing SO_3^{2-} , $S_2O_3^{2-}$ and NO_2^{-} turns the brown iodine solution colourless. However, with theC₂O₄², the brown solution turns colourless only after the mixture has been heated.

Test	Observation	Deduction
To the test solution, add iodine solution.	Brown solution turns colourless.	SO ₃ ²⁻ , S ₂ O ₃ ²⁻ , NO ₂ ⁻
To the test solution, add iodine solution and heat.	Brown solution turns colourless.	$C_2O_4^{2-}$

q) Action of ammonium molybdate solution

Ammonium molydate solution is used in conjunction with concentrated nitric acid to test for phosphate ions, PO_4^{3-} . When to a solution containing the PO_4^{3-} , ammonium molybdate solution is added followed by a few drops of concencentrated nitric acid and the mixture warmed, a yellow precipitate is formed.

Table showing a summary of Preliminary and Confirmatory tests for Common Anions

Anions	Preliminary/ Confirmatory tests	Test procedure	Observation
CO ₃ ² -	Preliminary test	Heat 2 spatula endfuls of the solid strongly in a dry test tube until there is no further change.	A colourless gas that turns moist blue litmus paper red and limewater milky (forms a white precipitate with calcium hydroxide solution).
	Confirmatory tests	i) To the unknown solid add 2cm³ of dilute hydrochloric acid or dilute nitric acid.	Effervescence of a colourless gas that turns moist blue litmus paper red and limewater milky.

			T
		ii) To the unknown solid, add 2 to 3 drops of concentrated sulphuric acid.	Rapid effervescence of a colourless gas that turns moist blue litmus paper red and limewater milky.
		iii) To the test solution, add lead(II) nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid with effervescence of a colourless gas that turns moist blue litmus paper red and limewatermilky.
		iv) To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid with effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky.
		v) To the test solution, add Barium chloride solution followed by dilute hydrochloric acid.	A white precipitate soluble in the acid with effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky.
		vi) To the test solution, add silver nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid with effervescence of a colourless gas which turns moist blue litmus paper red and limewater milky.
		vii) To the test solution, add silver nitrate solution followed by excess dilute ammonia solution.	A white precipitate in excess ammonia solution.
SO ₄ ²⁻	Preliminary tests	i) Heat 2 spatula endfuls of the solid strongly in a dry test tube until there is no further change.	A colourless, pungent gas, which turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green, is evolved. Also white fumes which turn moist
		ii) To the test solution, add lead(II)	blue litmus paper red. A white precipitate is formed.
		nitrate solution. iii) To the test solution, add lead(II) nitrate solution and warm.	A white precipitate insoluble on warming.
		iv) To the test solution, add lead(II) nitrate solution, followed by dilute nitric acid.	A white precipitate insoluble in the acid.
		v) To the test solution, add silver nitrate solution.	No observable change.
	Confirmatory tests	i) To the test solution, add Barium nitrate solution, followed by dilute nitric acid.	A white precipitate insoluble in the acid.
		ii) To the test solution, add Barium chloride solution followed by dilute hydrochloric acid.	A white precipitate insoluble in the acid.

SO ₃ ² -	Preliminary tests	i)To the unknown solid, add 2cm³ of dilute hydrochloric acid and warm. ii) To the unknown solid, add 2-3 drops of concentrated sulphuric acid and warm gently.	No observable change at room temperature, but on warming, there is effervescence of a colourless, pungent gas, turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless. Effervescence of a colourless, pungent gas, turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII)
		iii) To the test solution, add 2cm³ of dilute hydrochloric acid and warm.	solution from purple to colourless. Effervescence of a colourless, pungent gas, turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless.
		 iv) To the test solution, add lead(II) nitrate solution. v) To the test solution, add lead(II) nitrate solution followed by dilute nitric acid. vi) To the test solution, add Barium 	A white precipitate. A white precipitate soluble in the acid without effervescence. A white precipitate soluble in the acid
		nitrate solution followed by dilute nitric acid. vii) To the test solution, add Barium chloride solution followed by dilute hydrochloric acid.	without effervescence. A white precipitate soluble in the acid with evolution of a colourless, pungent gas which turns moist blue litmus paper red and bleaches it, and turns acidified potassium
		viii) To the test solution, add silver nitrate solution followed by dilute nitric acid.	dichromate(VI) solution from orange to green. A white precipitate soluble in the acid without effervescence.
	Confirmatory tests	i) To the test solution, add acidified potassium manganate(VII) solution.ii) To the test solution, add a few drops of iodine solution.	Purple solution turns colourless. Brown solution turns colourless.
$C_2O_4^{2-}$	Preliminary tests	i) Heat 2 spatula endfuls of the solid strongly in a dry test tube until there is no further change.	A colourless gas that turns moist blue litmus paper red and limewater milky is evolved.

		ii) To the unknown solid, add 2 to 3 drops of concentrated sulphuric acid and warm.	Effervescence of a colourless gas that turns moist blue litmus paper red and limewater milky is evolved. Effervescence of another colourless gas neutral to litmus paper and burns with a blue flame.
		iii) To the test solution, add lead(II) nitrate solution.iv) To the test solution, add lead(II) nitrate solution followed by dilute nitric acid.	A white precipitate. A white precipitate soluble in the acid without effervescence.
		v) To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid without effervescence.
		vi) To the test solution, add silver nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid without effervescence.
	Confirmatory	vii) To the test solution, add silver nitrate solution followed by excess dilute ammonia solution. i) To the test solution, add acidified	A white precipitate soluble in excess ammonia solution.
	tests	potassium manganate(VII) solution and heat. ii) To the test solution, add iodine	Purple solution turns colourless. Brown solution turns colourless.
		solution and heat.	Brown solution turns colouriess.
S ₂ O ₃ ² -	Preliminary tests Note: These two preliminary testscan also act as confirmatory	i) To the unknown solid, add 2-3 drops of concentrated sulphuric acid and warm gently.	Effervescence of a colourless, pungent gas, turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless and a cream precipitate(pale yellow precipitate) is formed.
	tests in case none of the test procedures for the confirmatory tests below has been provided.	ii) To the test solution, add 2cm³ of dilute hydrochloric acid and warm.	Effervescence of a colourless, pungent gas, turns moist blue litmus paper red and bleaches it, and turns acidified potassium dichromate(VI) solution from orange to green/turns acidified potassium manganate(VII) solution from purple to colourless and a cream precipitate (pale yellow precipitate) is formed.
	Confirmatory tests	i) To the test solution, addiodine solution.	Brown solution turns colourless.
		ii) To the test solution, add acidified potassium manganate(VII) solution.	Purple solution turns colourless.

Cl	Preliminary tests	i) Heat 2 spatula endfuls of the solid strongly in a dry test tube until there is no further change.	Misty, chocking fumes, which turn moist blue litmus paper red and form dense white fumes with concentrated ammonia solution. Also a greenish-yellow gas, turns mosit blue litmus paper red and bleaches it.
		ii) To the unknown solid, add a few drops of concentrated sulphuric acid and warm.	Effervescence of misty, chocking fumes, which turn moist blue litmus paper red and form dense white fumes with concentrated ammonia solution.
		iii) To the unknown solid, add a little manganese(IV) oxide followed by a few drops of concentrated sulphuric acid and warm.	Effervescence of a greenish–yellow gas with an irritating smell, which turns moist blue litmus paper red and bleaches it.
		iv) To the test solution, add lead(II) nitrate solution.	A white precipitate is formed.
		vi) To the test solution, add lead(II) nitrate solution followed by dilute nitric acid.	A white precipitate insoluble in the acid.
		v) To the test solution, add Barium nitrate solution, followed by dilute nitric acid.	No observable change.
	Confirmatory tests	i) To the test solution, add 2 drops of lead(II) nitrate solution and warm, then cool under running tap water.	A white precipitate soluble on warming, precipitate reappears on cooling.
		ii) To the test solution, add silver nitrate solution followed by dilute nitric acid.	A white precipitate insoluble in the acid.
		iii) To the test solution, add silver nitrate solution followed by excess ammonia solution.	A white precipitate soluble in excess ammonia.
Γ	Preliminary tests	i) Heat 2 spatula endfuls of the solid strongly in a dry test tube until there is no further change.	A purple vapour which turns moist blue litmus paper red and sublimes to form a black/purple/purplish-black solid.
		ii) To the unknown solid, add 2-3 drops of concentrated sulphuric acid and warm.	Apurple vapour which turns moist blue litmus paper red and sublimes to form a black/purple/purplish-black solid. White fumes which turn moist blue litmus paper red.
		iii) To the unknown solid, add half a spatula endful of manganese(IV) oxide followed by 2-3 drops of concentrated sulphuric acid and warm.	A purple vapour which turns moist blue litmus paper red and sublimes to form a black/purple/purplish-black solid.
		iv) To the test solution, add lead(II) nitrate solution.	A yellow precipitate.

		v) To the test solution, add dilute	
		nitric acid followed by lead(II)	A yellow precipitate.
		nitrate solution.	
		vi) To the test solution, add Barium	No observable change.
		nitrate solution.	
		vii) To the test solution, add silver	A pale yellow precipitate.
		nitrate solution.	
		viii) To the test solution, add dilute	
		nitric acid followed by silver nitrate	A pale yellow precipitate.
		solution.	
		ix) To the test solution, add silver	A pale yellow precipitate insoluble in
		nitrate solution followed by dilute	the acid.
		nitric acid.	
		x) To the test solution, add silver	A pale yellow precipitate insoluble
		nitrate solution followed by dilute	excess ammonia solution.
	G	ammonia solution until in excess.	
	Confirmatory	i) To the test solution, add 3-5 drops	Colourless solution turns brown and
	tests	of concentrated nitric acid and warm.	then to a blue-black solution
		Cool and then add starch solution.	Colorador colorio de transcribiración
		ii) To the test solution, add 5-6 drops	Colourless solution turns brown
		of concentrated sulphuric acid and warm. To the mixture, add sodium	solution and then colourless on
		thiosulphate solution.	addition of sodium thiosulphate solution.
		•	Solution.
		iii) To the test solution, add a	A granula activities in the escapic
		little bleaching powder (or add	A purple solution in the organic
		1cm ³ of sodium hypochlorite	layer/lower layer.
		solution), followed by 1cm ³ of	(Purple lower layer)
		dilute nitric acid and then 1cm ³ of	
		chloroform (or 1cm ³ of	
		tetrachloromethane) and shake	
		gently.	
Br-	Preliminary	i) Heat 2 spatula endfuls of the solid	A brown vapour which turns moist
	tests	strongly in a dry test tube until there	blue litmus paper red and bleaches it.
		is no further change.	
		ii) To the unknown solid, add a few	A brown vapour which turns moist
		drops of concentrated sulphuric acid	blue litmus paper red and bleaches it.
		and warm.	White fumes which turn moist blue
			litmus paper red.
		iii) To the unknown solid, add half a	
		spatula endful of manganese(IV)	A brown vapour which turns moist
		oxide followed by 2-3 drops of	blue litmus paper red and bleaches it.
		concentrated sulphuric acid and	
		warm.	
		iv) To the test solution, add lead(II)	
		nitrate solution	A white precipitate.
		v) To the test solution, add dilute	
		nitric acid followed by lead(II)	A white precipitate.
		nitrate solution.	

		vi) To the test solution, add Barium nitrate solution.	No observable change.
		vii) To the test solution, add silver nitrate solution.	A cream precipitate.
		viii) To the test solution, add silver nitrate solution followed by dilute nitric acid.	A cream precipitate insoluble in the acid.
		ix) To the test solution, add dilute nitric acid followed by silver nitrate solution.	A cream precipitate.
		x) To the test solution, add silver nitrate solution followed by dilute ammonia solution until in excess.	A cream precipitate dissolves with difficulty in excess ammonia solution.
	Confirmatory test	To the test solution, add a little bleaching powder (or add 1cm ³ of sodium hypochlorite solution), followed by 1cm ³ of dilute nitric acid and then 1cm ³ of chloroform (or 1cm ³ of tetrachloromethane) and shake gently.	An orange solution in the organic layer/lower layer. (orange lower layer).
NO ₃	Preliminary tests	i) Heat 2 spatula endfuls of the solid strongly in a test tube until there is no further change.	Brown, pungent fumes, which turn moist blue litmus paper red.
		i) To the unknown solid, add 2 to 3 drops of concentrated sulphuric to the unknown solid and warm gently.	Brown, pungent fumes, which turn moist blue litmus paper red.
		ii) To the test solution, add a few pieces of copper turnings followed by 3 to 4 drops of concentrated sulphuric acid and warm gently.	Brown, pungent fumes, which turn moist blue litmus paper red.
	Confirmatory test	i) To the test solution in a test tube, add a freshly prepared solution of iron(II) sulphate. Hold the test tube in a slanting position and then add concentrated sulphuric acid drop by drop down the wall of the test tube.	A brown ring is formed at the interface of the acid and aqueous layer.
		ii) To the test solution, add Devarda's alloy followed by excess dilute sodium hydroxide solution and warm gently.	A colourless, pungent, chocking gas which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid.
		iii) To the test solution, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm gently.	A colourless, pungent, chocking gas which turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid.
		Note: Zinc metal powder can also be used in place of aluminium metal powder for the same purpose in this test.	

NO ₂	Preliminary test	i)To the unknown solid, add 1cm³ of dilute hydrochloric acid and warm gently	Effervescence of brown, pungent fumes which turn moist blue litmus paper red.
			Brown, pungent solution turns pale blue.
	Confirmatory tests	i) To test solution, add a freshly prepared solution of iron(II) sulphate followed by dilute sulphate solution.	A dark brown complex is formed.
		ii) To the test solution, add acidified potassium manganate(VII) solution	Purple solution turns colourless.
		iii) To the test solution, add iodine solution.	Brown solution turns colourless.
CH₃COO⁻	Preliminary tests	i) Heat 2 spatula endfuls of the solid strongly in a dry test tube until there is no further change.	White fumes with a sweet odour which form a yellow precipitate with 2,4-dinitrophenylhydrazine solution (Brady's reagent). Also a colourless gas that turns moist blue litmus paper red and limewater milkyis evolved.
		ii) To the test solution, add 2 to 3 drops of concentrated sulphuric acid and warm gently.	White fumes with a vinegar smell, turn moist blue litmus paper red.
	Confirmatory tests	i) To the test solution, add neutral iron(III) chloride solution.	A red colouration is formed. (A red solution is formed.)
		ii) To the test solution, add Neutral iron(III) chloride solution and boil.	A brown precipitate is formed.
		iii) To the test solution, add ethanol followed by 3 to 5 drops of concentrated sulphuric acid and warm. Pour the product into a beaker of cold water.	A sweet, fruity smell.
PO ₄ ³ -	Preliminary tests	i) To the test solution, add lead(II) nitrate solution	A white precipitate is formed.
		ii) To the test solution, add lead(II) nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid without effervescence.
		iii) To the test solution, add Barium nitrate solution followed by dilute nitric acid.	A white precipitate soluble in the acid without effervescence.
		iv) To the test solution, add silver nitrate solution followed by dilute nitric acid.	A pale yellow precipitate soluble in the acid without effervescence.
		v) To the test solution, add silver nitrate solution followed by excess dilute ammonia solution.	A pale yellow precipitate soluble in excess ammonia solution.
	Confirmatory test	To the test solution, add ammonium molybdate solution followed by concentrated nitric acid and warm.	A yellow precipitate is formed.

CrO ₄ ² -	Preliminary tests	i) To the test solution, add lead(II) nitrate solution.	A yellow precipitate is formed.
	Cotts	ii) To the test solution, add Barium nitrate solution.	A yellow precipitate is formed.
	Confirmatory tests	i) To the test solution, add dilute hydrochloric acid.	Yellow solution turns into orange solution.
		ii) To the test solution, add dilute Sulphuric acid followed by hydrogen peroxide solution.	Yellow solution turns orange and then to an intense blue solution which quickly fades, leaving behind a green solution.
		iii) To the test solution, add 2-3 drops of silver nitrate solution followed by dilute nitric acid.	A red precipitate soluble in the acid without effervescence to form an orange solution.
		iv) To the test solution, add 2-3 drops of silver nitrate solution followed by excess dilute ammonia solution.	A red precipitate soluble in excess ammonia solution to form a yellow solution.
ClO	Preliminary tests	i) To the test solution, add lead(II) nitrate solution.	A white precipitate.
		ii) To the test solution, add silver nitrate solution.	A white precipitate.
	Confirmatory test	To the test solution, add dilute nitric acid.	A greenish-yellow gas; turns moist blue litmus paper red and bleaches it.

8.3.3 Rules followed while answeringInorganic Qualitative Analysis Questions (The Dos and Don'ts of Inorganic Qualitative Analysis)

- Observations should be writtenprecisely and completely.
- Deductions should relate to observations.
- In the deduction column, a wrong answer written counsels out with a correct answer.
- The use of words inappropriately will lead to loss of marks and should therefore be avoided.
- Words such as "suspected", "probably present" or "present" carry no extra marks. However, in case of a confirmatory test for any ion, the statement "confirmed present" must accompany the cation or anion referred to while making the deduction.
- Giving the identity of a cation or anion at the end of the experiment can only earn the candidate a mark if the ionwas properly identified at the confirmatory test during the course of the experiment. For example, the test procedure (where applicable), observation and deduction for confirming the cation or anion should be correct and complete.
- Any chemical formula or symbol or charge on any ion should be correctly written. For example, the charge on the ion should be as close as possible to the constituent letters of the symbol and for a symbol with more than one letter in it, the letters that constitute the symbol should be written as close as possible but should remain separate. (Refer to the Table below for details)

Ion or compound	Correct presentation of symbol or formula	Wrong presentation of symbol or formula
Zinc ion	Z_n^{2t}	2n, Zn2, Zn2, Zn2, Zn2
Lead(II) ion	Pb2+	Pb+ Pb+ Pb+ Pb+ Pb+2
Aluminium ion	Al ³⁺	Ai3+, Al3+, Al3+, Al3+ Al+3
Calcium ion	Cat	$C_a^{2+}, C_a^{2+}, C_a^{2+}, C_a^{+2}$
Magnesium ion	Ma ²⁺	M92+, mg2+, Ma+ Ma+2
Barium ion	Bat	Ba+, Ba+, Ba+, Ba+2
Copper(II) ion	Cu 2+	Cu, CU2+, Cu, Cu+2
Iron(II) ion	Fet	Fe, Fe, Fe, Fe, Fe, fe, fe
Nickel(II) ion	Ni ²⁺	Ni2+ Ni2+ Ni2+ Ni2+ Ni+2
Ammonium ion	NH#	NH4, NH4, NH3
Carbonate ion	CO_3^{2-}	Co_3^2 , CO_3^2 , CO_3^2 , CO_3^2
Sulphate ion	SO ₄ ²⁻	$S_{04}^{27}, S_{04}^{27}, S_{04}^{27}, S_{04}^{27}$
Chloride ion	Cl	Ci, Ct, CL, Cl, ct
Iodide ion	I-	1, t, i
Carbon dioxide	CO_2	Co2, CO2, CO2, CO2
Zinc oxide	ZnO	Zno, ZNO, 2nO, ZnO
Magnesium oxide	MaO	Mgo, M90, MgO, MgO
Lead(II) oxide	PLO	Pbo, PbO, PbO, Pb2+

8.4 Worked out examples on Inorganic Qualitative Analysis

Worked out example 8.4.1

You are provided with substance A, which contains two cations and two anions. Carry out the following tests and identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat a spatula endful of A in		M2+ F2+ G3+ G2+
a dry test tube strongly until there is no further change.	Pale green crystalline solid. A colourless condensate; which turns anhydrous copper(II) sulphate from white to blue. A colourless gas which turns moist blue litmus paper red; and limewater milky. Acolourless, pungent gas; turns moist blue litmus paper red; and turns acidified potassium dichromate solution from orange to green.	Ni^{2+} , Fe^{2+} , Cr^{3+} , Cu^{2+} Water of crystallization (or H_2O given off from a hydrated salt) CO_2 (g) evolved. CO_3^{2-} or $C_2O_4^{2-}$ suspected present. $SO_2(g)$ evolved SO_4^{2-} of SO_3^{2-} suspected present.
	A white residue.	$Al_2O_3(s)$, $MgO(s)$, $CaO(s)$ or $BaO(s)$ formed hence Al^{3+} , Mg^{2+} , Ca^{2+} or Ba^{2+} $CuO(s)$ formed hence Cu^{2+} or $NiO(s)$ formed hence Ni^{2+} .
b) Dissolve two spatula	Pale green crystalline solid	
endfuls of A in dilute nitric acid.	dissolves in the acid with effervescence of a colourless gas which turns moist blue litmus paper red; And limewater milky; to form a pale green solution.	$CO_2(g)$ evolved. CO_3^{2-} on firmed present. Ni^{2+} or Cr^{3+} suspected present.
To 3cm ³ of the resultant solution, add 7cm ³ of dilute sodium hydroxide solution	A pale green precipitate insoluble in excess.	Ni ²⁺ suspected present.
drop wise and then filter. Keep both the residue and filtrate.	A colourless filtrate. X A pale green residue. X	Zn^{2+} , Pb^{2+} , Al^{3+} or Sn^{2+} suspected present in filtrate Ni^{2+} suspected in residue.
c) To 4cm ³ of the filtrate obtained in (b) above, add dilute nitric acid drop by drop until the solution is just acidic. Divide the acidic solution into six parts.	A white precipitate soluble in the acid to form a colourless solution	Zn^{2+} , Pb^{2+} , Al^{3+} or Sn^{2+}

i) To the first part, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.	$Zn^{2+},Pb^{2+},Al^{3+}orSn^{2+}$
ii) To the second part, add dilute ammonium hydroxide solution drop wise until in excess.	A white precipitate insoluble in excess.	$\mathcal{F}_{Pb^{2+}orAl^{3+}}$
iii) To the third part, add a few drops of potassium iodide solution	No observable change.	Pb^{2+} absent \mathcal{X} Al^{3+} suspected present \mathcal{X}
iv) To the fourth part, add 2-3 drops of dilute nitric acid followed by 3-4 drops of litmus solution, followed by dilute dilute ammonia solution drop wise until in excess.	A blue lake solution. 💉	\mathcal{X} $Al^{3+} confirmed present.$
v) To the first part, add dilute nitric acid followed by lead(II) nitrate solution.	A white precipitate is formed.	SO_4^{2} , Cl or Br
vi) Carry out a test of your		
own choice to the sixth part, to confirm the anion present in A.		
Add Barium nitrate solution X followed by dilute nitric acid.	A white precipitate insoluble in the acid.	SO ₄ ² confirmed present.
d) Wash the residue obtained in (b) above with water and to the washed residue, add dilute nitric acid until it just dissolves. Divide the resultant solution into three parts.	Pale green residue dissolves in the acid to form a pale green solution	Ni ²⁺
i) To the first part, added dilute sodium hydroxide solution, drop wise until in excess.	A pale green precipitate insoluble in excess.	Ni^{2+}
ii) To the second part, add dilute ammonia solution drop wise until in excess.	A pale green precipitate soluble in excess to form a blue solution.	Ni^{2+}
iii) Carry out a test of your own choice to the third part to confirm one of the cations present in A.		
Add a little dilute ammonia X solution followed by dimethyl glyoxime solution.	A bright red precipitate (red / pink precipitate)	Ni ²⁺ confirmed present.

Cations in A	Al^{3+}	and	Ni^{2+}
Anions in A	CO_3^{2-}	and	SO_4^{2-}

Worked out example 8.4.2

You are provided with substance B₁, which contains two cations and two anions. Carry out the following tests and identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat a spatula endful of B ₁ in	Yellowpowdered solid.	$PbO(s)$ hence Pb^{2+} or CrO_4^{2-} .
a dry test tube strongly until		X
there is no further change.	A colourless condensate which turns	Water of crystallization (or
C	anhydrous copper(II) sulphate from	H_2O given off from a hydrated
	white to blue.	salt.)
	White fumes with a sweet odourand	W.
	form a yellow precipitate with 2,4-	$CH_3COCH_3(g)$ evolved.
	dinitrophenylhydrazine solution 🗡	CH₃COO ⁻ suspected present.
	(Brady's Reagent).	
	A colourless gas which turns moist	$CO_2(g)$ evolved.
	blue litmus paper red; A and	CO_3^{2-} or $C_2O_4^{2-}$ suspected.
	limewater milky.	$CO_3^{2^2}$ or $C_2O_4^{2^2}$ suspected.
	Brown; pangent fumes, which turn	
	moist blue litmus paper red;	$NO_2(g)$ evolved.
	A reddish-brownresidue when hot;	NO ₃ saspected present.
	turns yellowon cooling.	$PbO(s)$ formed; hence Pb^{2+}
	turns yettowon cooting.	
1) m	White fumes with a vinegar smell; turn	Acetic acid fumes;
b) To a spatula endful of B_1 , add		CH ₃ COO-vaspected present.
3 to 5 drops of concentrated	moist blue litmus paper red.	^
sulphuric acid and warm gently.	Brown; pungent fumes, which turn	$NO_2(g)$ wolved.
	moist blue litmus paper red.	NO3 suxpected present.
c) To two spatula endfuls of B ₁ ,	Yellow crystalline solid dissolves in	./
add dilute nitric acid and warm	the acid to form a colourless solution.	$Zn^{2+}, Pb^{2+}, Al^{3+}, Ba^{2+}, Mg^{2+}$ or
	ine deta to form a cotour tess solution.	Ca^{2+} suspected present.
gently to dissolve. To 4cm ³ of the resultant	Y	
	A whiteprecipitate insoluble in excess.	$Pb^{2+}, Al^{3+}, Sn^{2+},$
solution, add 7cm ³ of dilute		Ba^{2+} or Mg^{2+} suspected
ammonia solution drop wise and		
then filter.Keep both the residue	A colourless filtrate.	present.
and filtrate.		Zn ²⁺ suspected present in
	A white residue. 🗡	Zn suspecieu present in
		$filtrate$ Pb^{2+} , M^{3+} , Sn^{2+} , Ba^{2+} or
		Pb , Al , Sn , Ba or
		Mg ²⁺ suspected present in
		residue.

d) To 4cm³ of the filtrate obtained in (b) above, add dilute nitric acid drop by drop to acidify. Divide the acidic solution into five portions.	A white precipitate which dissolves in the acid to form a colourless solution.	Zn^{2+}
i) To the first portion, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.	Zn^{2+}
ii) To the portion, add dilute ammonium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.	Zn^{2+}
iii) Carry out a test of your own choice to the third portion to confirm one of the cations present in B ₁ . Add solid ammonium chloride, followed by 3-4 drops of disodium hydrogenphosphate solution and then dilute ammonia solution drop wise until in excess.	A white precipitate soluble in excess ammonia solution to form a colourless solution.	Zn² confirmed present.
iv) To the fourth portion, add neutral iron(III) chloride solution and boil.	A brown precipitate is formed.	X CH₃COO− confirmed present.
v) To the fifth portion, add zinc metal powder followed by excess sodium hydroxide solution and warm.	A colourless, pungent, chocking gas which turns moist red litmus paper blue; A and forms dense white fumes with concentrated hydrochloric acid.	$NH_3(g)$ evolved. NO_3 confirmed present.
e) Wash the residue obtained in (c) above with dilute ammonia solution and dissolve the washed residue in dilute nitric acid. Divide the resultant solution intofourportions.	White residue dissolves in the acid to form a colourless solution.	Pb^{2+} , Al^{3+} , Sn^{2+} , Ba^{2+} or Mg^{2+}
i) To the first portion, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.	Pb^{2+} , $Al^{3+}or Sn^{2+}$
ii) To the second portion, add dilute ammonia solution drop wise until in excess.	A white precipitate insoluble in excess.	Pb^{2+} , $Al^{3+}or Sn^{2+}$
iii) To the third portion, add dilute sulphuric acid.	A white precipitate.	Pb^{2+}

iv) To the fourth portion, add potassium chromate solution followed by sodium hydroxide solution drop wise until in excess.	A yellow precipitate soluble in excess sodium hydroxide solution to form a yellow solution.	Pb ²⁺ confirmed present.
Cations in B_1 Zn^{2+} Anions in B_1 CH_3CC	and Pb^2 and NC	+ X 03

Worked out example 8.4.3

You are provided with substance B_2 , which contains two cations and two anions. Carry out the following tests and identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat a spatula endful of B ₂ in a dry test tube strongly until there is no further change.	Observation White crystalline solid. A colourless condensate which turns anhydrous copper(II) sulphate from white to blue. Colourless gas with a pungent smell; turns moist blue litmus paper red; and acidified potassium dichromate(VI) solution from orange to green. White fumes turn moist blue litmus paper red. Whiteresidue.	Deduction $Zn^{2+},Pb^{2+},Al^{3+},Ba^{2+},Mg^{2+},$ Ca^2orSn^{2+} suspected present. Water of crystallization (or H_2O given off from a hydrated salt.) $SO_2(g)$ evolved. SO_4^2 or SO_3^{2-} suspected present. $SO_3(g)$ evolved. SO_4^{2-} suspected present. $CaO(s)$, $MgO(s)$, $Al_2O_3(s)$, $BaO(s)$ formed; hence Ca^{2+} , Mg^{2+} , Al^{3+} or Ba^{2+} .
b) To a spatula endful of B ₂ , add 3 to 5 drops of concentrated sulphuric acid and warm gently.	Effervescence of a brown vapour; turns moist blue litmus paper red; and bleaches it.	Br ₂ (g) evolved; Br-Xuspected present.
c) To two spatula endfuls of B ₂ , in a boiling tube, add 5cm ³ of water and shake well to dissolve. To 4cm ³ of the resultant solution, add dilute ammonia solution drop wise until in excess and then filter.Keep both the filtrate and residue.	White crystalline solid dissolves in water to form a colourless solution. Whiteprecipitate insoluble in excess. Colourless filtrate. White residue.	Zn^{2+} , PN^* , Al^{3+} , Sn^{2+} , Ba^{2+} , Mg^{2+} or Ca^{2+} suspected present. Pb^{2+} , Al^{3+} , Sn^{2+} , Ba^{2+} or Mg^{2+} suspected. Zn^{2+} suspected present in filtrate Pb^{2+} , Al^{3+} , Sn^{2+} , Ba^{2+} or Mg^{2+} suspected present in residue.

d) To 5cm ³ of the filtrate obtained in (c) above, add dilute nitric acid drop wise until the solution is just acidic. Divide the acidic solution into	A white precipitate which dissolves in the acid to form a colourless solution.	Zn^{2+}
seven portions. i) To the first portion, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.	Zn^{2+}
ii) To the second portion, add add dilute ammonia solution drop wise until in excess.	A white precipitate soluble in excess.	Zn^{2+}
iii) Carry out a test of your own choice to the thirdportion to confirm one of the cations present in B ₂ . Add solid ammonium chloride, followed by 3-4 drops of disodium hydrogenphosphate solution and then dilute ammonia solution drop wise until in excess.	A white precipitate soluble in excess ammonia solution forming a colourless solution.	Zn ²⁺ confirmed present.
iv) To the fourth portion, add 2-3 drops of lead(II) nitrate solution and warm.	A white precipitate insoluble on warming.	SO_4^{2}
v) To the fifthportion, add barium nitrate solution.	A white precipitate is formed.	SO_4^{2} confirmed present.
vi) To the sixth portion, add 2-3 drops of siver nitrate solution followed by dilute ammonia solution dropwise until in excess.	A cream precipitate; dissolves with difficultyin excess ammonia solution.	Br · ✗
(vii) To the seventh portion, add1 drops of dilute nitric acid followed by 1 drops of a solution of a bleaching agent, and then 2-3dropsof chloroform and shake gently.	An orange solution in the organic layer/lower layer.	Br confirmed present
e) Wash the residue obtained in (c) above with dilute ammonia solution and dissolve the washed residue in dilute sulphuric acid. Divide the resultant solution into three portions.	White residue dissolves in the acid to form a colourless solution.	Al^{3+} , Sn^{2+} or Mg^{2+}

i) To the first portion, add dilute sodium hydroxide solution drop wise until in excess.	A white precipitate soluble in excess to form a colourless solution.	Al^{3+} or Sn^{2+}
ii) To the second portion, add dilute ammonia solution drop wise until in excess.	A white precipitate insoluble in excess.	Al^{3+} or Sn^{2+}
iii) To the test solution, add 2-3 drops of dilute nitric acid are added, followed by 3-4 drops of litmus solution and then dilute ammonia solution drop wise until in excess.	A blue lake solution. X	Ak ³ Confirmed present.

Cations in Ba	$7n^{2+}$	and	Al^{3+}
			··············
Anions in B_2	SO_4^{2-}	and	Br^{-}

8.5 Practical Exercises on Inorganic Qualitative Analysis

Experiment 8.5.1

You are provided with substance C, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of C in		
a dry test tube strongly until there		
is no further change.		
b) To two spatula endfuls of C,		
add 6cm ³ of water. Shake well and		
then filter. Keep both the filtrate		
and residue.		
Divide the filtrate into three		
portions.		
i) To the first part add dilute		
i) To the first part, add dilute		
sodium hydroxide solution drop wise until in excess and then		
warm.		

ii) To the second part, add 2 drops		
of lead(II) nitrate solution and		
warm.		
iii) Carry out a test of your own		
choice to the third part to confirm		
one of the anions present in C.		
c) Dissolve the residue obtained		
in part (b) above in 5cm ³ of dilute		
nitric acid. Divide the resultant		
solution into four portions.		
i) To the first portion, add dilute		
sodium hydroxide solution drop		
wise until in excess.		
ii) To the third portion, add 2 to 3		
drops of potassium iodide solution.		
The second secon		
iii) To the third portion, add dilute		
ammonia solution drop wise until		
in excess.		
iv) To the fourth portion, add solid		
ammonium chloride followed by		
3-4drops of disodium hydrogen		
phosphate solution and then dilute		
ammonia solution drop wise until		
in excess.		
L	1	<u> </u>
d)(i) Cations in C	and	
(ii) Anions in C	and	

Experiment 8.5.2

You are provided with substance D, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of D in a		
dry test tube strongly until there is no		
further change.		
-		
b) To two spatula endfuls of D, add		
5cm ³ of dilute nitric acid and warm		
gently to dissolve. Cool the resultant		
solution.		
To 4cm ³ of the resultant solution, add		
7cm ³ of dilute sodium hydroxide		
solution drop wise and then filter.		
Keep both the filtrate and residue.		
c) To 4cm ³ of the filtrate obtained in (b)		
above, add dilute nitric acid drop by		
drop until the solution is just acidic.		
Divide the resultant solution into six		
parts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		
ii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third part, add dilute		
sulphuric acid.		
iv) Carry out a test of your own		
choice to the third part to confirm one of		
the cations present in D.		

v) To the fifth part, add a few pieces of	
Copper turnings followed by 3 to 4	
drops of concentrated sulphuric acid and	
warmgently.	
vi) To the sixth part, add freshly	
prepared iron(II) sulphate solution; then	
hold the test tube in a slanting position	
and then add concentrated sulphuric	
acid drop by drop along the wall of the	
test tube.(Avoid shaking).	
d) Dissolve the residue you have	
obtained in (b) above in dilute nitric	
acid. Divide the resultant solution into	
three parts.	
i) To the first part, add dilute sodium	
hydroxide solution drop wise until in	
excess.	
ii) To the second part, add dilute	
ammonia solution drop wise until in	
excess.	
iii) To the third part, add solid	
ammonium chloride followed by 3-4	
drops of disodium hydrogen phosphate	
solution and then dilute ammonia	
solutiondrop wise until in excess.	
a) (i) Cotions in D	and

e) (i) Cations in D	and	
(ii) Anions in D	and	

Experiment 8.5.3

You are provided with substance E, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) To two spatula endfuls of E, add 6		
drops of concentrated sulphuric acid		
and warm.		

b) Totava anotalo andfal of E odd	
b) Totwo spatula endful of E, add	
8cm³ of water. Shake well and filter.	
Keep both the filtrate and residue.	
a) Divide the filtrate into gaven	
c) Divide the filtrate into seven	
parts.	
i) To the first part, add dilute	
sodium hydroxide solution drop	
wise until in excess.	
ii) To the second part, add dilute	
ammonia solution drop wise until in	
excess.	
iii) To the third part, add sodium	
sulphate solution.	
iv) To fourth part,add potassium	
chromate(VI) solution followed by	
dilute hydrochloric acid and then	
dilute sulphuric acid.	
v) To the fifth part, add 1 to 2	
drops of Lead(II) nitrate solution	
and warm.	
vi) To the sixth part, add silver	
nitrate solution followed by dilute	
nitric acid	
vii) To the seventh part, add zinc	
metal powder followed by excess	
sodium hydroxide solution and then	
warm gently.	
d) Wash the residue obtained in (b)	
above with water and dissolve the	
washed residue in 5cm ³ of dilute	
nitric acid and warm to dissolve.	
Cool the resultant solution and	
divide it into four parts.	
1	
i) To the first part, add dilute	
sodium hydroxide solution drop	
wise until in excess.	
ii) To the second part, add dilute	
ammonia solution drop wise until in	
excess.	
iii) To the third part, add sodium	
sulphate solution.	

iv) Carry out a test of your own		
choice to the fourth part to confirm		
one of the cations present in E.		
e) (i)Cations in E	and	
(ii) Anions in E	and	

Experiment 8.5.4You are provided with substance F, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of F in a		
dry test tube strongly until there is no		
further change.		
h) To a gratule andful of F in a test		
b) To a spatula endful of F in a test tube, add 4cm ³ of dilute nitric		
acid. Divide the resultant solution into		
two parts.		
two parts.		
i) To the first part, add2 to 3 drops		
oflead(II) nitrate solution and warm,		
then cool under running tap water.		
ii) To the second part, add 2 to		
3drops of silver nitrate solution		
followed by excess dilute ammonia		
solution.		
c) To two spatula endfuls of F, add		
6cm ³ of dilute nitric acid, little at a		
time. To 4cm ³ of the resultant		
solution, add 7cm ³ of dilute sodium		
hydroxide solution drop wise and then		
filter. Keep both the filtrate and		
residue.		

d) To 4cm ³ of the filtrate obtained in		
(c) above, add dilute nitric acid drop		
by drop until there is no further		
change. Divide the resultant solution		
into three parts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		
ii) To the second part, add 2 to 3		
drops of potassium iodide solution.		
···> /T		
iii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iv) Carry out a test of your own choice to the third part to confirm the		
cation present in the filtrate.		
cation present in the intrate.		
e) Wash the residue obtained in (c)		
above with dilute sodium hydroxide		
solution and dissolve the washed		
residue in 5cm ³ of dilute nitric acid.		
Divide the resultant solution into four		
parts.		
i) To the first part, add dilute Sodium		
hydroxide solution drop wise until in excess.		
ii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third part, add sodium		
sulphate solution.		
ourpriess sortions		
iv) To the fourth part, add		
ammonium oxalate solution followed		
by dilute hydrochloric acid.		
f) (i) Cations in F	and	
(ii) Anions in F	and	

Experiment 8.5.5

You are provided with substance G, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

in the table below.	01 4	D 1 (1
Test	Observation	Deduction
a) Heat two spatula endfuls of G in		
a dry test tube strongly until there is		
no further change.		
b) To a spatula endful of G, add 5		
drops of concentrated sulphuric acid		
and warm.		
THE THEFT		
c) To 3 spatula endful of G, add		
8cm ³ of water. Shake well and then		
filter. Keep both the residue and		
filtrate.		
Divide the filtrate into seven		
portions.		
i) To the first portion, add dilute		
sodium hydroxide solution drop		
wise until in excess.		
ii) To the second portion, add a		
few drops of potassium iodide		
solution.		
iii) To the third portion, add dilute		
ammonia solution drop wise until in		
iv) Carry out a test of your own		
choice to the third portion to confirm		
one of the cations present in G.		

v) To the fifth portion, add neutral		
iron(III) chloride solution and boil.		
vi) To the sixth portion, add 2		
drops of lead(II) nitrate solution		
followed by dilute nitric acid.		
vii) To the seventh portion, add		
1cm ³ of dilute hydrochloric acid and		
warm.		
"``T 4 : 14 4: 11		
viii) To the eighth portion, add		
acidified potassium manganate(VII) solution.		
d) Wash the residue obtained in (c)		
above with water and to the washed		
residue, add5cm ³ of dilute nitric acid		
and warm gently to dissolve. Cool		
the resultant solution. Decant off the		
clear upper solution and divide it		
into three parts.		
1		
i) To the first part, add dilute		
sodium hydroxide solution drop		
wise until in excess.		
ii) To the second part, add a little		
zinc powder and warm gently.		
iii) To the third part, add		
potassium iodide solution.		
e) (1) Cations in G	and	
(ii) Anions in G	and	

Experiment 8.5.6

You are provided with substance H, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) To two spatula endfuls of H, add		
5 drops of concentrated sulphuric		
acid and warm.		

portions. i) To the first portion, add dilute sodium hydroxide solution drop wise until in excess. ii) To the second part, add dilute ammonia solution drop wise until in excess. iii) To the stord part, add dilute sulphuric acid. iiv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm² of dilute nitric acid and then 1cm² of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	b) To 3 spatula endfuls of H, add 9cm³ of water. Shake well and then filter. Keep both the residue and filtrate. Divide the filtrate into eight	
sodium hydroxide solution drop wise until in excess. ii) To the second part, add dilute ammonia solution drop wise until in excess. iii) To the third part, add dilute sulphuric acid. iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. """ """ """ """ """ """ """	_	
ii) To the second part, add dilute ammonia solution drop wise until in excess. iii) To the third part, add dilute sulphuric acid. iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add asilver nitrate solution. viii) To the cighth part, add a spatula endful of bleaching powder (or lcm³ of the bleaching agent solution) followed by 1cm² of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	sodium hydroxide solution drop	
ammonia solution drop wise until in excess. iii) To the third part, add dilute sulphuric acid. iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add aliver mitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm² of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
excess. iii) To the third part, add dilute sulphuric acid. iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or lcm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
iii) To the third part, add dilute sulphuric acid. iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. """ """ """ """ """ """ """	_	
sulphuric acid. iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in G. v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or lcm² of the bleaching agent solution) followed by lcm³ of dilute nitric acid and then lcm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
choice to the fourth part to confirm one of the cations present in G.		
v) To the fifth part, add aluminium metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	one of the cations present in G.	
metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
metal powder followed by excess dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
dilute sodium hydroxide solution and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
and warm. vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
vi) To the sixth part, add 2 drops of lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	=	
lead(II) nitrate solution. vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
vii) To the seventh part, add silver nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	I	
nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	read(11) illuate solution.	
nitrate solution. viii) To the eighth part, add a spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	vii) To the seventh part, add silver	
spatula endful of bleaching powder (or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	<u> </u>	
(or 1cm³ of the bleaching agent solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	viii) To the eighth part, add a	
solution) followed by 1cm³ of dilute nitric acid and then 1cm³ of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
nitric acid and then 1cm³of chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	(or 1cm ³ of the bleaching agent	
chloroform and shake gently. d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution	solution) followed by 1cm ³ of dilute	
d) Wash the residue obtained in (c) above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
above with water and to the washed residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
residue, add 6cm³ of dilute nitric acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
acid and warm gently to dissolve. Cool the resultant solution and Divide the cold resultant solution		
Cool the resultant solution and Divide the cold resultant solution		
Divide the cold resultant solution		
	into three parts.	

i) To the first part, add dilute sodium hydroxide solution drop wise until in excess and then heat.	
ii) To the second part, add a little magnesium metal powder and leave to stand.	
iii) To the third part, add 2 to 3 drops of potassium iodide solution followed by sodium thiosulphate solution.	

e) (i) Cations in H	and
(ii) Anions in H	and

Experiment 8.5.7

You are provided with substance I, which contains three cations and a single anion. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Dissolve two spatula endfuls of		
R in about 6cm ³ of water. Keep the		
resultant solution for part (c).		
b) To 4cm³ of the solution obtained in (b) above, add dilute sodium hydroxide solution drop wise as you shake until in excess and then filter. Keep both the residue and filtrate.		
c) To 3cm ³ of the filtrate obtained in (b) above, add dilute hydrochloric acid drop by drop until there is no further change. Divide the resultant solution into six parts.		
i) To the first part, add dilute sodium hydroxide solution drop wise until in excess.		

ii) To the second part, add dilute ammonia solution drop wise until in		
excess.		
iii) To the third part, add sodium		
carbonate drop wise until in excess.		
caroniate grop wise until in excess.		
iv) To the fourth part, add 2-3 of		
dilute nitric acid followed by 3-4		
drops of litmus solution followed by		
dilute ammonia solution drop wise		
until in excess.		
v) To the fifth part, add lead(II)		
nitrate solution followed by dilute		
nitric acid.		
vi) Carry out a test of your own		
choice to confirm the anion present		
in I.		
d) Wash the residue obtained in (b)		
above with water and dissolve the		
washed residue in 4cm ³ of dilute		
nitric acid. Divide the resultant		
solution into two parts.		
i) To the first part, add dilute		
sodium hydroxide solution drop		
wise until in excess and heat.		
::\ T- 4\14-11-4-		
ii) To the second part, add dilute		
ammonia solution drop wise until in excess.		
iii) To the second part, add		
potassium hexacyanoferrate(II)		
solution.		
d) Grind half a spatula end full of I		
with soda lime using the bottom of a		
test tube.		
e) (i)Cations in I	, and	
(ii)Anion in I		

Experiment 8.5.8

You are provided with substance J, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of		
Jstrongly in a dry test tube until there		
is no further change.		
b) To a spatula endful of J, add 6cm ³		
of dilute nitric acid and warm gently		
to dissolve. Cool the resultant		
solution.		
To 5cm ³ of the cold resultant solution,		
add dilute sodium hydroxide solution		
drop wise until in excess and then		
filter. Keep both the filtrate and residue.		
c) To the filtrate obtained in (c) above,		
add dilute nitric acid drop by drop to		
acidify. Divide the resultant solution		
into seven parts.		
nice seven pares.		
i) To the first part, add dilute		
sodium hydroxide solution drop wise		
until in excess.		
ii) To the second part, dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third part, add solid		
ammonium chloride followed by 3-4		
drops of disodium hydrogenphosphate		
solution and then dilute ammonia		
solution drop wise until in excess.		
iv) To the fourth part, add add 1 to 2		
drops of lead(II) nitrate solution		
followed by dilute nitric acid.		
v) To the fifth part, add Barium		
nitrate solution followed by dilute		
nitric acid.		
intro uora.		

vi) To the sixth part, add 2cm ³ of		
dilute hydrochloric acid and warm		
gently.		
vii) Carry out a test of your own		
choice to the seventh part to confirm		
one of the anions present in J.		
d) Wash the residue obtained in (b)		
above with dilute sodium hydroxide		
solution and dissolve the washed		
residue in 4cm ³ of dilute hydrochloric		
acid.Divide the resultant solution into		
fourparts.		
•		
i) To the first part, add dilute		
sodium hydroxide solution drop wise		
until in excess.		
ii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iii) Carry out a test of your own		
choice to confirm the other cation		
present in J.		
e) (i) Cations in J	and	
(ii) Anions in J	and	

Experiment 8.5.9

You are provided with substance K, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of L in a		
dry test tube strongly until there is no		
further change.		
2		
b) To 2 spatula endfuls of K, add 8cm ³		
of water. Shake well and then filter.		
Keep both the residue and filtrate.		
Divide the filtrate into four parts.		
i) To the first part, add 2 to 3 drops of		
lead(II) nitrate solution followed by		
dilute nitric acid.		
ii) To the second part, add 2 to 3		
drops of Barium nitrate solution		
followed by dilute nitric acid.		
iii) To the fourth part, add acidified		
potassium manganate(VII) solution		
and heat.		
c) Wash the residue obtained in (b)		
above with water and to the washed		
residue, add 5cm ³ of dilute nitric acid		
and warm gently to dissolve. Cool the		
resultant solution.		
To 4cm ³ of the cold resultant solution,		
add 7cm ³ of dilute ammonia solution		
drop wise and then filter. Keep both		
the residue and filtrate.		
d) Dissolve the residue obtained in		
part (c) above in about 4cm ³ of dilute		
hydrochloric acid. Divide the resultant		
solution intothree parts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		

ii) To the second part, add dilute		
ammonium hydroxide solution drop		
wise until in excess.		
iii) To the third part, add concentrated		
nitric acid followed by solid sodium		
bismuthate and warm.		
d) To the filtrate obtained in (c) above,		
add dilute nitric acid drop by drop to		
acidify.		
Divide the acidic solution into		
fourportions.		
1		
i) To the first portion, add dilute		
sodium hydroxide solution drop wise		
until in excess.		
ii) To the second portion, add sodium		
carbonate solution drop wise until in		
excess.		
iii) To the third portion add dilute		
iii) To the third portion, add dilute		
ammonium hydroxide solution drop wise until in excess.		
iv) Carry out a test of your own choice		
to the fourth portion to confirm one of		
the cations present in K.		
-		
e) (i) Cations in K	and	
(ii) Anions in V	and	
(II) AIIIOIIS III K	anu	

Experiment 8.5.10

You are provided with substance L, which contains three cations and a single anion. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of L in a		
dry test tube strongly until there is no		
further change.		
1) C.i. 11-16		
b) Grind half a spatula endful of L with soda lime using the bottom of a		
test tube.		
test tube.		
c) To two spatula endful of L, add		
7cm ³ of water.		
Shake well and then filter. Keep both		
the residue and filtrate.		
d) Divide the filtrate into two parts , each of 1cm ³ .		
i) To the first part, add 1-2 drops of		
lead(II) nitrate solution and warm,		
then cool under running tap water.		
ii) To the second part, add dilute		
nitric acid followed by silver nitrate		
solution.		
e) Wash the residue obtained in (c)		
above with water and to the washed		
residue, add 6cm ³ of dilute nitric acid		
and heat for two minutes to disolve.		
Cool the resultant solution.		
To 3cm ³ of the cold resultant solution, add 7cm ³ of dilute ammonia solution		
drop wise and then filter. Keep both		
the residue and filtrate.		
f) To the filtrate obtained in (e) above,		
add dilute nitric acid drop by drop		
until the solution is just acidic.		
Divide the acidic solution into four		
parts.		

i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		
ii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third part, add sodium		
sulphate solution.		
iv) To the fourth part, add potassium		
iodide solution drop wise until in		
excess.		
g) Dissolve the residue obtained in		
part (e) above in about 4cm ³ of dilute		
hydrochloric acid. Divide the resultant		
solution into three parts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess and heat.		

ii) To the second part, add dilute		
ammonium hydroxide solution drop		
wise until in excess.		
iii) To the third part, add excess		
concentrated hydrochloric acid.		
1) (i) C-tiiI	1	
h) (i) Cations in L	.,and	

(ii) Anions in L.....

Experiment 8.5.11

You are provided with substance M, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat two spatula endfuls of M in a dry		
test tube strongly until there is no further		
change.		

b) To a spatula endful of M, add 3 to 5	
drops of concentrated sulphuric acid and	
warm.	
c) Totwo spatula endfuls of M, add	
10cm ³ of water. Shake well and filter.	
Keep both the filtrate and residue.	
Divide the filtrate into seven portions.	
i) To the first portion, add dilute	
sodium hydroxide solution drop wise	
until in excess.	
ii) To the second portion, add sodium	
carbonate solution drop wise until in	
excess.	
iii) To the third portion, add solid	
ammonium chloride followed by 3-4	
drops of disodium hydrogen phosphate	
solution and then dilute ammonia	
solution drop wise until in excess.	
iv) To the fourth portion, add neutral	
iron(III) chloride solution.	
v) To the fifth portion, add ethanol	
followed by 5 drops of concentrated	
sulphuric acid and heat. Pour the product	
in a beaker of cold water.	
vi) To the sixth portion, add 2 drops of	
lead(II) nitrate solution and warm.	
vii) Carry out a test of your own choice	
to the seventh portion to confirm one of	
the anions present in M.	
the diffolis present in W.	
d) Wash the residue obtained in (c) above	
and to the washed residue, add 3cm ³ of	
dilute nitric acid and warm to dissolve,	
then cool the resultant solution. Divide	
the cold resultant solution into three	
portions.	
i) To the first portion, add sodium	
hydroxide solution drop wise until in	
excess.	

ii) To the second portion, add dilute ammonia solution drop wise until in		
excess.		
iii) To the third portion, add excess concentrated hydrochloric acid.		
e) (i) Cations in M	and	
(ii) Anions in M	and	

Experiment 8.5.12

You are provided with substance N, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

in the table below.	Ob	D - J 4°
Test	Observation	Deduction
a) Heat two spatula endfuls of M in a		
dry test tube strongly until there is no		
further change.		
b) To a spatula endful of M, add 5cm ³		
of water and shake well to mix and then		
filter. Keep both the filtrate and		
residue.		
Tostado.		
c) Divide the filtrate obtained in (b)		
above into three portions.		
decre into the ce pertions.		
i) To the first portion, add lead(II)		
nitrate solution.		
mude bolderon.		
ii) To the second portion, add Silver		
nitrate solution.		
iii) To the third portion, add a little		
bleaching powder (or 1cm ³ of a		
solution of a bleaching agent), followed		
by 1cm ³ of dilute nitric acid and then		
1cm ³ of chloroform and shake gently.		
1 Jiii 51 Jiii 61 O To Tilli Wild Silano Bollery.		

d) Wash the residue obtained in (b)	
above with water, and to the washed	
residue, add 5cm ³ of dilute nitric acid.	
Shake gently for one minute. Warm	
patientlyto dissolve and then cool the	
resultant solution.	
e) To 3cm ³ of the cool resultant	
solution obtained in (d) above, add	
7cm ³ of dilute sodium hydroxide	
solution drop wise as you shake and	
then filter. Keep both the residue and	
filtrate.	
(f) Dissolve the residue obtained in (e)	
above in about 3cm ³ of dilute nitric	
acid. Divide the resultant solution into	
three parts.	
:) T- 41- C-4 - 41 1:1-4 1:	
i) To the first part, add dilute sodium	
hydroxide solution drop wise until in	
excess.	
ii) To the second part, add dilute	
ammonia solution drop wise until in	
excess.	
CACCSS.	
iii) Carry out a test of your own choice	
to the third part to confirm one of the	
cations present in N.	
g) To 4cm ³ of the filtrate obtained in	
(e) above, add dilute nitric acid drop by	
drop to acidify. Divide the acidic	
solution into three parts.	
i) To the first part, add dilute sodum	
hydroxide solution drop wise until in	
excess	
ii) To the second part, add dilute	
ammonia solution drop wise until in	
excess.	

iii) Carry out a test of your own choice		
to the fourth part to confirm the other		
cation present in N.		
-		
h) (i) Cations in N	and	
(ii) Anions in N	and	

Experiment 8.5.13

You are provided with substance P, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) To two spatula endfuls of P, add 7cm ³ of water and shake well; then		
filter.		
Keep both the filtrate and residue.		
b) Divide the filtrate obtained in (a) above into four parts.		
i) To the first part, add lead(II) nitrate solution followed by dilute nitric acid.		
ii) To the second part, add Barium nitrate solution followed by dilute nitric acid.		
iii) To the third part, add 2 drops of silver nitrate solution followed by 5 drops of dilute nitric acid.		
iv) To the fourth part, add ammonium molybdate solution followed by concentrated nitric acid and warm.		

c) Wash the residue obtained in (a)		
above with water and to the washed		
residue, add 6cm ³ of dilute nitric acid,		
then warm to dissolve better. Cool the		
resultant solution.		
To 4cm ³ of the cold resultant solution,		
add dilute ammonia solution drop wise		
until in excess and then filter. Keep		
both the filtrate and residue. d) To 4cm ³ of the filtrate, add dilute		
nitric acid dop by drop to acidify.		
Divide the acidic solution into four		
parts.		
Finance		
i) To the first part, add dilute sodium		
hydroxide solution dropwise until in		
excess.		
ii) To the second part, add potassium		
iodide solution.		
iii) To the third part add dilute		
iii) To the third part, add dilute ammonia solution drop wise untilin		
excess.		
iv) Carry out a test of your own choice		
to the fourth part to confirm one of the		
cations present in P.		
d) Wash the residue obtained in (c)		
above with dilute ammonia solution,		
and to the washed residue, add 5cm ³ of		
dilute nitric acid.		
Divide the resultant solution into four		
parts.		
i) To the first portion, add dilute		
sodium hydroxide solution drop wise until in excess.		
unun in excess.		
	·	

ii) To the second part, add dilute ammonia solution drop wise until in		
excess.		
iii) To the third part, add sodium sulphate solution.		
iv) Carry out a test of your own choice to the fourth part to confirm one of the cations present in P.		
e) (i) Cations in P	and	

Experiment 8.5.14

You are provided with substance Q, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved.

(ii) Anions in P.....and.....

Test	Observation	Deduction
a) Totwo spatula endfuls of Q, add 7cm ³ of water. Shake well and then		
filter. Keep both the filtrate and residue.		
b) Divide the filtrate obtained in (b) above into six parts.		
i) To the first part, add sodium hydroxide drop wise until in excess.		
ii) To the second part, add dilute ammonia solution drop wise until in excess.		

iii) To the third part, add sodium	
carbonate solution drop wise until in	
excess.	
iv) To the fourth part, add excess	
sodium hydroxide solution, followed	
by hydrogen peroxide solution and	
warm, then add amylalcohol followed	
by dilute sulphuric acid.	
v) To the fifth part, add lead(II) nitrate	
solution followed by dilute nitric acid.	
solution followed by diffue male dela.	
vi) Carry out a test of your own choice	
to the sixth part, to confirm one of the	
anions present in Q.	
c) Wash the residue obtained in (a)	
above with water and dissolve the	
washed residue in 4cm ³ of dilute nitric	
acid. Divide the resultant solution into	
four parts.	
i) To the first part, add dilute sodium	
hydroxide solution drop wise until in	
excess.	
ii) To the second part, add dilute	
ammonia solution drop wise until in	
excess.	
iii) To the third part, add sodium	
sulphate solution.	
iv) Carry out a test of your own choice	
to the fourth part to confirm the cation	
present in the residue.	

d) (i) Cations in Q.....and

(ii) Anions in Q.....and....

A Simplified Approach to A' Level Chemistry Practicals

Experiment 8.5.15

You are provided with substance R, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved.

Test	Observation	Deduction
a) To a spatula endfuls of R, add 7cm ³		
of water. Shake well and then filter.		
Keep both the filtrate and residue.		
b) Divide the filtrate obtained in (a)		
above into three parts.		
:) T- 41- 6:444(II):44-		
i) To the first part, add lead(II) nitrate solution followed by dilute nitric acid.		
solution followed by under intric acid.		
ii) To the second part, add Barium		
nitrate solution followed by dilute nitric		
acid.		
iii) Carry out a test of your own choice		
to the third part to confirm one of the		
anions present in R.		
c) Wash the residue obtained in (a)		
above with water and to the washed		
residue, add 6cm ³ of dilute nitric acid		
and warm to dissolve; then cool the resultant solution.		
To 4cm ³ of the cold resultant solution,		
add 7cm ³ of dilute sodium hydroxide		
solution drop wise and then filter. Keep		
both the filtrate and residue.		
A) To Aous 3 of the City of the in a 1.1		
d) To 4cm ³ of the filtrate obtained, add dilute sulphuric acid drop by drop until		
the solution is just acidic. Divide the		
acidic solution into four parts.		

i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		
ii) To the second part, add sodium		
carbonate solution drop wise until in		
excess.		
iii) To the third part, add dilute ammonia solution drop wise until in		
excess.		
iv) Carry out a test of your own choice		
to the fourth part to confirm one of the		
cations present in R.		
e) Wash the residue obtained in (c)		
above with dilute sodium hydroxide solution and to the washed residue, add		
4cm ³ of dilute nitric acid and shake		
well to dissolve. Divide the resultant		
solution into four parts.		
-		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
ii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third part, add sodium		
sulphate solution.		
iv) To the fourth part, add		
solidammonium chloride followed by		
3-4 drops of disodium		
hydrogenphosphate solution and then		
dilute ammonia solution drop wise until		
in excess.		
f) (i) Cations in D	and	
	and	
(ii) Anions in R	and	

Experiment 8.5.16

You are provided with substance S, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved.

Test	Observation	Deduction
a) To a spatula endful of S , add 5 drops of concentrated sulphuric acid and warm.		
b) To two spatula endfuls of S, add 6cm³ of water and shake well to dissolve. To 5cm³ of the resultant solution, add 8cm³ of dilute sodium hydroxide solution drop wise and then filter. Keep both the residue and filtrate.		
c) Dissolve the residue obtained in (b) above in 4cm³ of dilute sulphuric acid. Divide the resultant solution into three parts. i) To the first part, add dilute sodium hydroxide solution drop wise until in excess.		
ii) To the second part, add dilute ammonium hydroxide solution drop wise until in excess.		
iii) To the third part, add a few drops of Potassium hexacyanoferrate(III) solution.		
d) To the filtrate obtained in (b) above, add dilute nitric acid drop by drop until there is no further change. Divide the resultant solution into seven parts.		
i) To the first part, add dilute sodium hydroxide solution drop wise until in excess.		
ii) To the second part, add dilute ammonium hydroxide solution drop wise until in excess.		

iii) To the third part, add dilute sulphuric acid.	
iv) To the fouth part, add Devarda's alloy followed by excess sodium hydroxide solution and boil.	
v) To the fifth part, add lead(II) nitrate solution followed by dilute nitric acid.	
vi) Carry out a test of your own choice to the sixth part, to confirm one of the anions present in S.	
vii) To the seventh part, silver nitrate solution followed by excess ammonia solution.	

e) (1) (Cations in S	Sand
/ (/		

Experiment 8.5.17

You are provided with substance T, which contains three cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved.

Test	Observation	Deduction
a) Heat two spatula endfuls of T		
strongly in a dry test tube until there is		
no further change.		
b) To a spatula endful of T, add 5 drops		
of concentrated sulphuric acid and		
warm.		

⁽ii) Anions in S.....and....

c) To three spatula endfuls of T in a		
boiling tube, add 12cm ³ of water and		
shake well; then filter.		
Keep both the residue and filtrate.		
Divide the filtrate obtained above into		
nine parts.		
pw		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		
ii) To second part, add sodium		
carbonate solution drop wise until in		
excess.		
iii) To the third part, add dilute		
ammonium hydroxide solution drop		
wise until in excess.		
iv) Carry out a test of your own choice		
to the fourth part to confirm one of the		
cations present in T.		
·····		
v) To the fifh part, add ethanol		
followed by 5 drops of concentrated		
sulphuric acid and heat. Pour the		
product in a beaker containing cold		
water.		
vi) Carry out a test of your own choice		
to the sixth part to confirm one of the		
anions present in T.		
vii) To theseventh part, add 2 to 3		
drops of dilute nitric acid followed by		
lead(II) nitrate solution.		
viii) To the eighth part, add 2 to 3		
drops of dilute nitric acid followed by		
silver nitrate solution.		
	I .	

ix) To the ninth part, add a little	
bleaching powder (or 1 cm ³ of the	
bleaching agent solution) followed by	
1cm ³ of dilute nitric acid and then 1cm ³	
of chloroform. Shake gently.	
d) Wash the residue obtained in (c)	
above with water and dissolve the	
washed residue in 3cm ³ of dilute nitric	
acid. Divide the resultant solution into	
four parts.	
i) To the first part, add dilute sodium	
hydroxide solution drop wise until in	
excess.	
ii) To the second part, add zinc metal	
powder and warm gently.	
iii) To the third part, add dilute	
ammonia solution drop wise until in	
excess.	
iv) To the fourth part, add potassium	
hexacyanoferrate(II) solution.	

Experiment 8.5.18

You are provided with substance U, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved.

e) (i) Cations in T.....and

(ii) Anions in T.....and....

Test	Observation	Deduction
a) To a spatula endful of U, add 7cm ³		
of water. Shake well and then filter.		
Keep both the filtrate and residue.		
b) To the filtrate obtained in (a) above,		
add dilute sodium hydroxide solution		
drop wise until in excess and then filter.		
Keep both the filtrate and residue.		

c) To the filtrate obtained in (b) above, add dilute nitric acid drop by drop until the solution is just acidic. Divide the acidic solution into six parts.	
i) To the first part, add dilute sodium hydroxide solution drop wise until in excess.	
ii) To the second part, add potassium iodide solution.	
iii) To the third part, add dilute ammonia solution drop wise until in excess.	
iv) To the fourth part, add solid ammonium chloride followed by 3-4 drops of disodium hydrogen phosphate solution and then dilute ammonia solution drop wise until in excess.	
ii) To the fifth part, add 2 to 3 drops of lead(II) nitrate solution and warm.	
iii) Carry out a test of your own choice to the sixth part to confirm one of the anions present in U.	
d) Wash the residue obtained in (b) above with d andilute sodium hydroxide solution andto the washed residue, add 5cm ³ of dilute nitric acidand divide the resultant solution into four parts.	
i) To the first part, add dilute sodium hydroxide solution drop wise until in excess.	

ii) To the second part, add sodium carbonate solution drop wise until in excess.		
iii) To the third part, add dilute ammonia solution drop wise until in excess.		
iv) Carry out a test of your own choice		
to the fourth part to confirm one of the cations present in U.		
T		
e) Wash the residue obtained in (a)		
above with waterand to the washed		
residue, add 4cm ³ of dilute nitric acid		
and shake well to dissolve. Divide the		
resultant solution into four parts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		
ii) To the second part, add sodium		
carbonate solution drop wise until in		
excess.		
iii) To the third part, add dilute		
ammonia solution drop wise until in		
excess. iv) To the fourth part, add potassium		
iodide solution followed by sodium		
thiosulphate solution.		
•		•
f) (i) Cations in U	and	
(ii) Anions in U	and	

Experiment 8.5.19

You are provided with substance V, which contains two cations and two anions. Carry out the following tests to identify them. Identify any gases which may be evolved.

Test	Observation	Deduction
a) To a spatula enful of S, add 5 drops		
of concentrated sulphuric acid and		
warm.		
b) To two spatula endfuls of S, add		
7cm ³ of dilute nitric acid and warm to		
dissolve.		
To 5cm ³ of the resultant solution, add		
dilute ammonia solution drop wise until		
in excess and then filter. Keep both the		
residue and filtrate.		
c) To 4cm ³ of the filtrate obtained in		
(b) above, add dilute nitric acid drop by		
drop until the solution is just acidic.		
Divide the resultant solution into		
fiveparts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in excess.		
ii) To the second part, add dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third part, add excess		
concentrated hydrochloric acid.		
iv) To the fourth part, add 2 to 3 drops		
of lead(II) nitrate solution.		
v) To the fifth part, add silver nitrate		
solution followed by dilute nitric acid.		
solution followed by under mittle deld.		
DW 14 11 14 11 42		
d) Wash the residue obtained in (b)		
above twice with water and dissolve the washed residue in dilutenitric acid.		
Divide the resultant solution into four		
parts.		
parts.		
i) To the first part, add dilute sodium		
hydroxide solution drop wise until in		
excess.		

ii) To the second part, add dilute		
ammonium hydroxide solution drop		
wise until in excess.		
iii) To the third part, add sodium		
sulphate solution.		
1		
iv) Carry out a test of your own choice		
to the fourth part to confirm one of the		
cations present in V.		
<u> </u>		
T 41 101 0X 115 3		
e) To a spatula endful of V, add 5cm ³		
of water. Shake well and filter. Keep		
the filtrate, but discard the residue.		
Divide the filtrate into two parts.		
:\ T- 41- 644 11 - 6		
i) To the first part, add a few copper		
turnings followed by concentrated		
sulphuric acid and then warm.		
ii) Carry out a tast of your own aboice		
ii) Carry out a test of your own choice to the second part to confirm one of the		
anions present in V.		
amons present in v.		
e) (i) Cations in V	and	
(ii) Anions in V	and	

Experiment 8.5.20

You are provided with substance W, which contains two cations and two anions. Carry out the following tests and identify them. Identify any gases which may be evolved. Write your observations and deductions in the table below.

Test	Observation	Deduction
a) Heat a spatula endful of W in a	Observation	Deduction
dry test tube strongly until there is		
no further change.		
b) To a spatula endful of W, add 3 to		
5 drops of concentrated sulphuric		
acid and warm gently.		
c) To two spatula endfuls of B ₂ , in a		
boiling tube, add 5cm ³ of water and		
shake well to dissolve.		
To 4cm ³ of the resultant solution,		
add dilute ammonia solution drop		
wise until in excess and then		
filter.Keep both the filtrate and		
residue.		
d) To 5cm ³ of the filtrate obtained in		
(c) above, add dilute nitric acid drop		
wise until the solution is just acidic.		
Divide the acidic solution into seven		
portions.		
F		
i) To the first portion, add dilute		
sodium hydroxide solution drop		
wise until in excess.		
ii) To the second portion, add add		
dilute ammonia solution drop wise		
until in excess.		
iii) Carry out a test of your own		
choice to the thirdportion to confirm		
one of the cations present in B_2 .		

iv) To the fourth portion, add 3-4		
drops of lead(II) nitrate solution and		
warm.		
v) To the fifthportion, add barium		
nitrate solution followed by diute		
nitric acid.		
vi) To the sixth portion, add 2-3		
,		
drops of siver nitrate solution		
followed by dilute ammonia solution		
dropwise until in excess.		
(vii) To the seventh portion, add 2		
drops of a solution of a bleaching		
agent, followed by 2 drops of dilute		
nitric acid and then		
3-4 drops of chloroform and shake		
gently.		
e) Wash the residue obtained in (c)		
above with dilute ammonia solution		
and dissolve the washed residue in		
dilute sulphuric acid. Divide the		
resultant solution into three		
portions.		
i) To the first portion, add dilute		
sodium hydroxide solution drop		
wise until in excess.		
ii) To the second portion, add dilute		
ammonia solution drop wise until in		
excess.		
iii) To the third portion, add 2-3		
drops of litmus solution followed by		
dilute ammonia solution drop wise		
until in excess.		
Cations in W	and	
A XX7	1	

Cations in W	and	
Anions in W	and	

CHAPTER NINE 9.0 ORGANIC QUALITATIVE ANALYSIS

9.1 INTRODUCTION

The categories of organic compounds dealt with at this level include: alcohols, carbonyls (aldehydes and ketones), carboxylic acids and salts of carboxylic acids, halocarboxylic acids (e.g chloroethanoic acid), phenols/phenolic compounds, amines, e.t.c.

9.1.1 Key aims of analyzing Organic Compounds

Analysis of organic compounds aims at the following:

- 1) Categorising an organic compound as either aliphatic or aromatic.
- 2) Determination of the carbon to hydrogen ratio in an organic compound.
- 3) Categorising an organic compound as either saturated or unsaturated.
- 4) Identification of the functional group of an organic compound. The functional groups include the following:
 - Hydroxyl group, -OH
 - Carbonyl group, -
 - Carboxyl group, C OH
 - Amino group,-NH₂
- 5) Distinguishing between different classes of organic compounds, for instance primary, secondary or tertiary alcohols.

9.2 PRELIMINARY TESTS

9.2.1 Physical appearance of the compound

The physical appearance of an organic compound at room temperature may give us an overview of the nature of organic compound.

Observation	Deduction
A colourless liquid.	Lower aliphatic compound (Aliphatic compound
	with 6 carbon atoms or less)
Solid compound.	Aromatic compound or higher aliphatic compound
	(Aliphatic compound with more than 6 carbon
	atoms)ororganic salt.
Pink crystals which dissolve to form a pink	Phenol probably present.
solution on exposure to the atmosphere.	

9.2.2 The Odour /Smell of an organic compound

There is a great variety of odours of organic compounds in spite of the fact that not all of them can be easily described. Below are some of the common odours and the corresponding organic compounds that they point to.

Observation	Deduction
Carbolic smell	Phenol
Antiseptic smell	Triiodomethane
Sweet, fruity smell	Ester
Sweet smell (but not fruity)	Ketones, aromatic aldehydes or lower alkylhalides
Pungent	Lower carboxylic acids and acid chlorides
Smell of petrol	Liquid alkanes
Fishy smell	Amines
Odourless	Ionic organic compound

9.2.3 The Flame Test

The flame Test is used for:

- Categorising an organic compound as either aliphatic or aromatic.
- Determination of the carbon to hydrogen ratio (carbon content) in an organic compound.
- Categorising an organic compound as either saturated or unsaturated.

In the flame test, a small amount of an organic compound is burnt on a spatula end or in a crucible. The observation made should focus on the colour of the flame, but most importantly whether the flame is sooty or non-sooty.

Test	Observation	Deduction
	Burns readily with a blue non-	Aliphatic, saturated compound with
	sooty flame.	a low carbon to hydrogen ratio(with
		a low carbon content).
Burn a small amount of	Burns readily with a yellow	Aromatic, unsaturated compound
the organic compound	sooty flame.	with a high C:H ratio (with a high
on a spatula end or		carbon content) or long chain
crucible		aliphatic, unsaturated compound
		with a high C:H ratio (with a high
		carbon content).
	Burns with great difficulty with	Carbohydrate in form of a sugar
	a smell of burnt sugar.	present e.g. Glucose or Sucrose.
	Does not burn.	Alkyl halide, nitrogen containing
		compound or salt of carboxylic acid.

9.2.4 Solubility in water

The solubility of an organic compound in water can help us to analyse an organic compound in the following aspects:

- To determine whether the compound is polar or non-polar.
- If the compound is polar, we can determine whether it is a polar aliphatic or a polar aromatic compound.
- If the compound is polar and aliphatic, we can determine whether it is of a low molecular weight/low molecular mass or a high molecular weight/high molecular mass.

In principle, an organic compound that is soluble in water or miscible with water should be polar since water is a polar solvent.

Therefore, if a compound is soluble in water or miscible with water, then it is a polar aliphatic compound with a low molecular weight (low molecular mass).

If the compound is partially soluble in water or partially miscible with water, then it is a polar aromatic compound or a polar aliphatic compound with a high molecular weight (high molecular mass) Note: The lower the molecular weight (molecular mass), the shorter the hydrophobic hydrocarbon portion of the molecule and hence the greater the solubility in water (the greater the miscibility with water) and the higher the molecular weight (molecular mass), the longer the hydrophobic hydrocarbon portion of the molecule and hence the lower the solubility in water (the lower the miscibility with water).

If the compound is insoluble in water or immiscible with water, then the compound is on-polar.

Note:1) The word soluble, partially solubleand insoluble in water are used when dealing with a solid organic compound while the words miscible, partially miscible or immiscible with water are used when dealing with a liquid organic compound.

2) The hydroxyl group, carbonyl group, carboxyl group and amino group are always associated with polarity whenever they are present in a molecule. In general, therefore, functional groups that contain oxygen atoms and nitrogen atoms are significantly polar and hence molecules that possess such functional groups tend to dissolve readily in wat

Test	Observation	Deduction
To 1cm ³ of the organic	Soluble in water/miscible	Polar aliphatic compound with a low
compound, add 2cm ³ of water.	with water to form a	molecular mass e.g.alcohol,
	colourless solution	carbonyl, carboxylic acid or ester.
To 1cm ³ of the organic	Partially miscible with	Polar aliphatic compound with a
compound, add 2cm ³ of water.	water to form a colourless	high molecular mass e.g. alcohol,
	solution	carbonyl, carboxylic acidorester.
Shake a spatula endful of the	Sparingly soluble in water	Polar aromatic compound e.g.
organic compound with 4cm ³	to form a colourless	aromatic carbonyl compound,
of water.	solution	carboxylic acid, ester or phenol.
To 1cm ³ of the organic		
compound, add 2cm ³ of water.	Immiscible with water	Non-polar aliphatic compound.

Shake a spatula endful of the		
organic compound with 4cm ³	Insoluble in water	Non-polar aromatic compound
of water.		

9.2.5Use of Indicators

The most commonly used indicators include litmus paper and Universal indicator.

Indicator Used			Deduction
Litmus paper	Litmus solution	Universal Indicator	
		Solution	
No effect on both blue and	No effect on both blue	Solution remains	Alcohols, carbonyl or
red litmus paper.	and red litmus	green.	Ester.
	solution.		
Blue litmus paper turns	Blue litmus solution	Solution turns red or	Carboxylic acid
red/pink.	turns red.	pink or orange.	orphenol.
Red litmus paper turns	Red litmus solution	Solution turns blue,	Amine orsalt of
blue.	turns blue.	purple or violet.	carboxylic acid.

9.3 REAGENTS USED TO TEST FOR ORGANIC COMPOUNDS

a) Action of sodium hydroxide solution

Sodium hydroxide solution is used to test for the presence of carboxylic acids and phenol in a neutralisation reaction.

If the compound is a lower aliphatic carboxylic acid, then the colourless solution of the carboxylic acid is miscible with sodium hydroxide solution to form a colourless solution with no gas or vapour evolved.

If the compound is an aromatic carboxylic acid or phenol, the solid dissolves in the sodium hydroxide solution on warming to form a colourless solution with no gas or vapour evolved.

If the compound is an ester, the compound loses its sweet, fruity smell on boiling. This is due to an ester hydrolysis reaction which results in formation of an alcohol and a salt of a carboxylic acid.

If the compound is an aliphatic amine, the compound is miscible with sodium hydroxide solution on warming with evolution of a colourless gas that turns moist red litmus paper blue (The gas evolved is an ammonium salt which is alkaline).

If the compound is an amide, the compound is miscible with sodium hydroxide solution and on warming, a colourless gas which turns moist red litmus paper blue.

Test	Observation	Deduction
To 1cm ³ of the organic	Miscible to form a colourless	Neutralisation reaction.
compound, add 4cm ³ of sodium	solution with no evolution of a	aliphatic carboxylic acidorphenol
hydroxide solution.	gas.	present.
To a spatula endful of the solid,	Dissolves to form a colourless	Neutralisation reaction
add 4cm ³ of sodium hydroxide	solution without evolution of a	aromatic carboxylic acid or
solution and warm.	gas.	phenol present.
To 1cm ³ of the organic	Miscible to form a colourless	Ester hydrolysis to form alcohol
compound, add 4cm ³ of sodium	solution without evolution of a	and sodium salt of a carboxylic
hydroxide solution and boil/heat.	gas and on boiling/heating, the	acid.
	sweet fruity smell is lost.	Ester present.
To 1cm ³ of the organic	Miscible with evolution of a	
compound, add 4cm ³ of sodium	colourless gas that turns moist	Aliphatic amine present.
hydroxide solution.	red litmus paper blue.	
To 1cm ³ of the organic	Miscible on warming with	
compound, add 4cm ³ of sodium	evolution of a colourless gas	Aliphatic amide present.
hydroxide solution and warm.	that turns moist red litmus	
	paper blue.	

b) Action of sodium carbonate or sodium hydrogencarbonate

The sodium carbonate or sodium hydrogencarbonate may either be added in solid or solution form. Carboxylic acids ionize partially to form hydrogen ions which react with sodium carbonate or sodium hydrogencarbonate, evolving carbon dioxide gas (a colourless gas which turns moist blue litmus paper red and limewater milky).

RCOOH(aq)
$$\rightleftharpoons$$
RCOO⁻(aq) + H⁺(aq)
2H⁺(aq) + CO₃²⁻(aq) \rightarrow H₂O(l) + CO₂(g)
H⁺(aq) + HCO₃⁻(aq) \rightarrow H₂O(l) + CO₂(g)

Test	Observation	Deduction
To 1cm ³ of the solution, add a		
little solid sodium		
carbonate/sodium	Effervescence of a colourless gas	$CO_2(g)$ evolved.
hydrogencarbonate.	which turns moist blue litmus	Carboxylic acid present.
OR To 1cm ³ of the solution,	paper red and limewater milky.	
add sodium carbonate/sodium		
hydrogencarbonate solution.		
To 1cm ³ of the solution, add a		
little solid sodium		
carbonate/sodium		
hydrogencarbonate.	No observable change.	Carboxylic acid absent.
OR To 1cm ³ of the solution,		
add sodium carbonate/sodium		
hydrogencarbonate solution.		

Note: In spite of being acidic, phenol is a weak acid which cannot liberate carbon dioxide gas from sodium carbonate or sodium hydrogenearbonate.

c) Action of iron(III) chloride solution

Iron(III) chloride solution is used to test for phenol (or phenolic compound). Formation of a violet colouration (purple colouration) indicates presence of a phenol/phenolic compound. While testing for phenol (or phenolic compounds), no heating is required.

Test	Observation	Deduction
_	A violet colouration (purple	Phenol/phenolic compound
To 1cm ³ of the solution, add	colouration) is formed.	present.
iron(III) chloride solution.	No observable change.	Phenol/phenolic
		compoundabsent.

d)Action of neutral iron(III) chloride solution

Neutral iron(III) chloride solution is used to test for a phenol (or phenolic compound), salts of carboxylic acids (for instance the **benzoate ion and alkanoates** such as **ethanoate and methanoate)**or aliphatic carboxylic acids.

If addition of neutral iron(III) chloride solution is not followed by heating, then the test is for a phenol (or phenolic compound) whereby formation of a violet colouration (purple colouration) indicates presence of a phenol (or phenolic compound) yet if there is no observable change (if no violet/purple colouration is formed), this indicates absence of aphenol (or phenolic compound).

On the other hand, if addition of neutral iron(III) chloride solution is followed by heating, then the test is for either a salt of a carboxylic acid (e.g. benzoate, ethanoate or methanoate) or an aliphatic carboxylic acid whereby formation of a brown precipitate (reddish-brown precipitate) indicates the presence of a salt of a carboxylic acid (e.g. benzoate, ethanoate or methanoate) while if red colouration is formed which turns to a reddish-brown precipitate on heating, then an aliphatic carboxylic acid is present.

(a) The reddish-brown precipitate (brown precipitate) is due to the following sequence of reactions:

COOT COOH

(aq) + H₂O(1)
$$\rightleftharpoons$$
 (aq) + OH (aq)

Fe³⁺(aq) + 3OH (aq) \rightarrow Fe(OH)₃(s)

Reddish-brown precipitate

(COO + Fe³⁺(aq) \rightarrow Fe(S)

(aq) + Fe³⁺(aq)

(b) The red colourationwhich turns to a reddish-brown precipitate on heating is due to the following reaction.

$$3RCOOH(aq) + Fe^{3+}(aq) \rightarrow (RCOO)_3Fe(s) + 3H^+(aq)$$
Brown precipitate

Test Observa	tion Deduction
--------------	----------------

	A brown precipitate is formed on heating.	COO ⁻ present
To 1cm ³ of the solution, add neutral iron(III) chloride solution and heat.	No observable change evwn on heating.	COO
		Or salt of aliphatic
		carboxylic acid absent.
	A red colouration which turns to a	Aliphatic carboxylic acid
	reddish-brown precipitate on	present
	heating	

e) Action of 2,4-dinitrophenylhydrazine solution (Brady's Reagent)

2,4-dinitrophenylhydrazine solution is used to test for the presence of carbonyl compounds. When 2, 4-dinitrophenylhydrazine solution is added to a solution of a carbonyl compound, whether it is a ketone or aldehyde, a yellow precipitate or orange precipitate is formed. A yellow precipitate is usually formed from an aliphatic carbonyl compound while an orange precipitate is usually formed from an aromatic carbonyl compound.

Test	Observation	Deduction
To 1cm ³ of the solution, add 2-3 drops of Brady's Reagent.	A yellow precipitate (or an orange precipitate) is formed.	Carbonyl compound present.
drops of Brady's Reagent.	No observable change.	Carbonyl compound absent.

f) Action of saturated sodium hydrogensulphite solution

Saturated sodium hydrogensulphite solution is another reagent that can be used to confirm the presence of carbonyl compounds. All carbonyl compounds, whether **ketones or aldehydes**, form a **white precipitate** when saturated sodium hydrogensulphite solution is added to them.

Test	Observation	Deduction
To 1cm ³ of the solution,	A white precipitate is formed.	Carbonyl compound present.
addsaturated sodium hydrogensulphite solution.	No observable change.	Carbonyl compound absent.

Note: Acidified sodium sulphite solution can also be used for the same purpose in case saturated sodium hydrogensulphite solution is not available.

g) Action of ammoniacal silver nitrate solution (Tollen's Reagent)

Since aldehydes and ketones behave similarly in several aspects, there is need for a mechanism of differentiating between them. Tollen's Reagent is one of those reagents that can be used to differentiate between the two. When Tollen's Reagent is added to a solution containing an aldehyde and the mixture warmed and the mixture allowed tostand, a **silver mirror** is formed at the walls of the test tube. Sometimes instead of a silver mirror, a grey precipitate is observed. Methanoic acid and aldose sugars such as Glucose also give a positive test with Tollen's Reagent since these compounds also possess aldehyde groups.

Note: 1) In some situations, the student may be indirectly required to prepare his/her own Tollen's reagent.; for instance, the procedure may read: To $1cm^3$ of silver nitrate solution, add $1cm^3$ of sodium hydroxide solution followed by diluteammonia solution drop wise until the precipitate just dissolves, then add $2cm^3$ of the test solution and warm, then allow to stand.

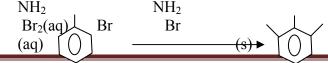
2) Aldose sugars, due to possession of an aldehyde group which has reducing properties, are also called Reducing sugars.

For Methanoic acid,

$$HCOOH(aq) + 2Ag^{+}(aq) + 2OH^{-}(aq) \rightarrow 2Ag(s) + 2H_{2}O(l) + CO_{2}(g)$$

Test	Observation	Deduction
To 1cm ³ of the solution, add 2cm ³ of Tollen's Reagent and warm; then allow to stand.	A silver mirror is formed on the walls of the test tube	Reducing agent present such as aldehyde, methanoic acid or Reducing sugar (such as Glucose).
		Glucosej.

h) Fehling's solution


Fehling's solution can also be used effectively in differentiating between aldehydes and ketones. When Fehling's solution is added to an aldehyde and the mixture boiled, a reddish-brown precipitate (red precipitate) is formed. This observation, however, only applies to aliphatic aldehydes and aldose sugars (reducing sugars) such as glucose, but does not apply to aromatic aldehydes in which the aldehyde group is directly attached to the Benzene ring (Benzaldehyde and its derivatives).

Test	Observation	Deduction
To 1cm ³ of the solution, add 2cm ³ of Fehling's solution and boil	A reddish-brown precipitate is formed.	Reducing agent present such asaliphatic aldehyde, or reducing sugar (such as Glucose)

i)Action of bromine water

Bromine water is used to test for unsaturation whereby when bromine water is reacted with any compound with multiple carbon-carbon bonds (double or triple carbon-carbon bonds), the reddish-brown solution of bromine water turns colourless.

However, in the practical paper, it is also common to use bromine water to test for aliphatic amines, aromatic amines and phenols in which case, apart from the Bromine water turning from brown to colourless, there are other observations made, for instance formation of white fumes or formation of a white precipitate, depending on the type of organic compound present. For aryl amines (aromatic amines) and Phenol, a white precipitate is formed. This is due to formation of a 2,4,6-tribromoproduct on addition of excess Bromine water.

Your Guide to the Most Recent Explorations in Chemistry Page 267

White precipitate of 2,4,6-tribromoaminobenzene

Test	Observation	Deduction
To 1cm ³ of the solution or to half a spatula endful of the solid, add Bromine water, little at a time, shaking after each addition (until the Bromine water has turned from brown to colourless).	Brown solution turns colourless; with no white fumes; and formation of a second liquid layer. Brown solution turns colourless; with formation of white fumes; and a product that is completely miscible with water. Brown solution turns colourless; with formation of white fumes; and a product that is immiscible with water; white precipitate formed on addition of excess Bromine water.	Unsaturated compound with multiple carbon-carbon bonds e.g. alkene oralkyne. Aliphatic amine or aromatic amine whose amino group is not directly attached to the Benzene ring. Aryl amine (aromatic amine with amino group directly attached to the Benzene ring) present.
	Brown solution turns colourless; with no white fumes; and a product that is immiscible with water; white precipitate formed on addition of excess Bromine water.	Phenol present.

Note: The reagent is used as either a saturated solution of Bromine or as a solution of 5%Bromine in carbon tetrachloride.

j) Action of acidified potassium permanganate solution [acidified potassium manganate(VII) solution]

Acidified potassium permanganate solution is a very effective oxidizing agent which oxidizes various classes of organic compounds which have reducing properties in their functional groups.

Therefore, acidified potassium permanganate solution, just like bromine water, is used to test for unsaturation whereby when the reagent is reacted with any unsaturated organic compound with multiple carbon-carbon bonds (e.g. alkenes and alkynes), the purple solution turns colourless.

Acidified Potassium permanganate solution is also used to test for other reducing agents such as:

- Primary alcohols
- Secondary alcohols
- Aldehydes
- Methanoic acid.
- Aldose sugar (Reducing sugar e.g. Glucose).
- Oxalic acid and salts of oxalic acid.

In the process, primary alcohols are oxidized to aldehydes.

 $RCH_2OH \rightarrow RCHO$

Secondary alcohols are oxidized to ketones.

RCHOHR' → RCOR'

Aldehydes are oxidized to carboxylic acids.

RCHO → RCOOH

Oxalate ions from oxalic acid and a salt of oxalic acid are oxidized to carbon dioxide gas. $C_2O_4^{2-}(aq) \rightarrow 2CO_2(g) + 2e^{-}$

Methanoic acid is oxidized to Carbon dioxide.

 $HCOOH(aq) \rightarrow CO_2(g) + 2H^+(aq) + 2e^-$

Test	Observation	Deduction
To 1cm ³ of the solution, add 1-2	Purple solution turns	Unsaturated compound with
drops of acidified potassium	colourless in the cold and	multiple carbon-carbon bond(s)
permanganate solution	the product is immiscible	e.g. alkene or alkyne present.
	with water.	
To 1cm ³ of the solution, add 1-2	Purple solution turns	Primary alcohol, secondary
drops of acidified potassium	colourless on warming	alcohol, aldehyde, methanoic
permanganate solution and	and the product is	acid, aldose sugar (e.g. Glucose),
warm/heat.	miscible with water.	oxalic acid or salt of oxalic acid
		present.

Note:

- 1)Unsaturated compoundswith multiple carbon-carbon bonds such as alkenesandalkynes can reduce acidified potassium permanganate solution in the cold. No warming/heating is required at all.
- **2)**Apart from oxalic acid and salts of oxalic acid which can only reduce acidified potassium permanganate after warming or heating, the other reducing agents in the category of primary or secondary alcohols, aldehydes, methanoic acid and aldose sugars can reduce acidified potassium permanganate solution whether in the cold or on warming/heating.

k) Action of acidified potassium dichromate solution [acidified potassium dichromate (VI) solution]

Acidified potassium dichromate solution is also an oxidizing agent and is used to test for reducing agents such as primary alcohols, secondary alcohols, aldehydes, methanoic acid and aldose sugars exactly in the same way as acidified potassium permanganate solution except that it cannot be used to test for unsaturation (the presence of multiple carbon-carbon bonds) in an organic compound. The positive test is when the orange solution turns green while the negative test is when there is no observable change.

l)Action of ethanoic acid and concentrated sulphuric acid

This combination of reagents is used to confirm the presence of the –OH functional group in primary alcohols. It is based on the fact that when to a**primaryalcohol (primary akanol)**, a carboxylic acid (such as ethanoic acid) is added followed by concentrated sulphuric acid followed by warming/heating, an ester is formed. This is known as *esterification reaction* and the formation of an ester is detected by a sweet, fruity smell

Test	Observation	Deduction
To 1cm ³ of the solution of the		
organic compound, add 1cm ³ of	A sweet, fruity smell.	Esterification reaction.
Ethanoic acid followed by about 5		(Ester formed)
drops of concentrated sulphuric acid		Primary alcohol confirmed
and warm/heat. Pour the product in a		present.
beaker containing cold water.		

m)Action of ethanol or methanol and concentrated sulphuric acid

This combination of reagents is used to confirm the presence of the –COOH functional group in carboxylic acids. It is based on the fact that when to a **carboxylic acid**, a primaryalcohol (primary alkanol) is added followed by concentrated sulphuric acid and then followed by warming/heating, an **ester** is formed. This is known as *esterification reaction* and formation of an ester is detected by a sweet, fruity smell.

Test	Observation	Deduction
To 1cm ³ of the solution of the organic		
compound, add 1cm ³ of		Esterification reaction
ethanol/methanol followed by about 5	A sweet, fruity smell.	(ester formed).
drops of concentrated sulphuric acid		Carboxylic acid confirmed
and warm/heat. Pour the product in a		present.
beaker containing cold water.		-

n) Action of Sodium metal

Sodium is a highly electropositive metal which reacts with all hydroxy compounds (all compounds that have the –OH functional group), with effervescence of a colourless gas that burns with a pop sound. The gas evolved is hydrogen gas.

$$ROH(aq) + Na(s) \rightarrow RO^{-}Na^{+}(aq) + \frac{1}{2}H_{2}(g)$$

Note: Carboxylic acids also liberate hydrogen gas when reacted with sodium metal.

$$RCOOH(aq) + Na(s) \rightarrow RCOO^{-}Na^{+}(aq) + \frac{1}{2}H_{2}(g)$$

o) Action of phosphorus pentachloride

To about 0.25g of the dry organic compound, in a dry test tube, approximately 0.1g of phosphorous pentachloride is added. This is followed by observing whether misty fumes are given off, which form dense white fumes with concentrated ammonia solution. (*The misty fumes are of hydrogen chloride gas*). phosphorus pentachloride reacts with organic compounds that contain the –OH group, for instance alcohols, phenols and carboxylic acids.

Phosphorus pentachloride, also, when reacted with amines, dense white fumes of ammonium chloride are evolved.

Note: Phosphorus pentachloride solution can also be used for the same purpose.

Observation	Deduction
Misty fumes which form dense white fumes	Compound withan –OH group such asalcohol,
with concentrated ammonia solution.	phenol or carboxylic acid.
Dense white fumes.	Basic compound present such as amine .

p) Action of anhydrous zinc chloride and concentrated hydrochloric acid (Lucas' Reagent)

Lucas' reagent is used to differentiate between different classes of alcohols.

The reagent is used at room temperature. When Lucas' Reagent is reacted with a primary alcohol, there is no observable change at room temperature; with a secondary alcohol, a cloudy solution is formed within 5 to 10 minutes; while with a tertiary alcohol, a cloudy solution is formed immediately.

Observation	Deduction
No observable change at room temperature.	Primary alcohol present.
A cloudy solution is formed within 5 to 10 minutes.	Secondary alcohol present.
A cloudy solution is formed immediately.	Tertiary alcohol present.

Note:Lucas' reagent is prepared by dissolving 2.5g of anhydrous zinc chloride in 100cm³ of concentrated hydrochloric acid. (The reagent is used when freshly prepared).

q) Action of iodine solution and sodium hydroxide solution (Iodoform Test)

This combination of reagents is used to test for alcohols with the structure:

Note: All secondary alcohols that conform to the above structure give a positive iodoform test while ethanol is the only primary alcohol that gives a positive iodoform test. None of the tertiary alcohols gives a positive iodoform test.

The combination of reagents is also used to test for the presence of carbonyl compounds with the structure:

$$CH_3C - R \quad \text{where } R \text{ is an alkyl group or hydrogen}$$

$$CH_3C - R(aq) + 3I_2(aq) + 4NaOH(aq) \rightarrow RCOONa(aq) + CHI_3(s) + 3NaI(aq) + 3H_2O(l)$$

$$O$$

When iodine solution is added to the test solution followed by dilute sodium hydroxide solution drop wise, followed by gentle warming and then cooling, to the primary and secondary alcohols, together with carbonyls of the specified structures above, a yellow precipitate with an antiseptic smell is formed. The yellow precipitate is for triiodomethane, CHI₃.

Test	Observation	Deduction
To 1cm ³ of the solution, add 1 cm ³ of Iodine solution followed by sodium hydroxide solution drop wise until the solution turns pale yellow. Warm gently and then cool under running tap water.	A yellow precipitate with an antiseptic smell.	CHI ₃ (s) formed Alcohol with the structure: H CH ₃ C OH ORCarbonyl with the structure: CH ₃ C O

r)Action of soda lime

Soda lime is a solid mixture of sodium hydroxide and calcium oxide. It reacts with aliphatic carboxylic acids to liberate alkane vapours.

$$RCOOH(aq) + 2NaOH(s) - \frac{CaO}{heat} R-H(g) + Na_2CO_3(s)$$

It reacts with aromatic carboxylic acids (specifically benzoic acid) to evolve benzene vapour.

It reacts with hydroxyl aromatic carboxylic acids to evolve phenol vapour.

Soda lime also, when reacted with simple aliphatic amides and substituted amides evolve vapours of amines.

It further reacts with ammonium salts to evolve ammonia gas.

When using soda lime, to about1cm³ of the organic compound or to half a spatula endful of the organic compound, about 2 spatula end fulls of soda lime are added and the mixture warmed first gently and then warmed more strongly and any gases/vapours evolved are noted, taking keen interest in their odours, effect on moist litmus papers and in some situations, the vapours evolved are allowed to burn especially when an aliphatic carboxylic acid or Benzoic acid is being suspected.

Test	Observation	Deduction
	A colourless vapour with a smell	Alkane evolved.
	of petrol or paraffin which burns	Aliphatic carboxylic acid
	with a non-sooty flame.	present.
	A colourless vapour which burns	Benzene vapour evolved
	with a sooty flame.	Aromatic carboxylic acid (e.g
		Benzoic acid) present.
To 1cm ³ of the organic	A colourless vapour with a	Phenol evolved.
compound or to half a	carbolic smell which burns with	Hydroxyl aromatic carboxylic
spatula endful of the organic	a sooty flame.	acid present.
compound, add 2 spatula	A colourless vapour with a	Lower aliphatic amine
endfuls of soda lime and	characteristic fishy smell which	evolved.
warm the mixture, first	turns moist red litmus paper blue	
gently and then more	and burns with a non-sooty	Lower aliphatic amide
strongly.	flame.	or substituted amide present.
	A colourless, pungent, chocking	
	gas, turns moist red litmus paper	NH ₃ (g) evolved.
	blue and forms dense white	Ammonium salt
	fumes with concentrated	or Simplest aliphatic amide
	hydrochloric acid.	present.

s) Action of concentrated hydrochloric acid and sodium nitrite solution(at 0°C)

This combination is used to test for classes of amines. The reaction is carried out at 0^{0} C ($<5^{0}$ C). The combination forms nitrous acid, HNO₂.

With aliphatic primary amines, a colourless solution of an alcohol is observed with effervescence of a colourless gas neutral to litmus paper (the gas evolved is nitrogen gas).

$$RCH_2NH_2(s)RCH_2OH(ad) NQ_2 / Conc. HCl$$

$$0^0C$$

Note:

1)A primary aliphatic amide may also give the same observation as aprimary aliphaticamine.

2) Withsecondary aliphatic amines, a yellow oily liquid is observed with no effervescence of a colourless gas (the yellow oily liquid is a nitrosoamine).

R'
RNHR'
$$0^{0}C$$

N-N=O+ H₂O

Yellow oily liquid
(Nitrosoamine)

3) With a Tertiary aliphatic amine, a colourless solution is observed with no effervescence of a colourless gas.

4) Similarly, with a primary aromatic amine $(C_6H_5NH_2)$, a colourless solution is observed with no effervescence of a colourless gas (the colourless solution is due to formation of a **diazonium salt**).

$$\begin{array}{c} NH_2N^{\dagger}NCl^{\dagger} \\ \hline \\ NaNO_2/Conc. \ HCl \\ \hline \\ 0^0C \\ \hline \\ Colourless \ solution \ of \ a \\ daizonium \ salt \\ (Benzene \ diazonium \ chloride) \\ \end{array}$$

However, on warming, effervescence of a colourless gas neutral to litmus paper occurs. The colourless gas is nitrogen.

Test	Observation	Deduction
To 1cm ³ of the organic	Effervescence of a	$N_2(g)$ evolved.
compound or to half a spatula	colourless gas neutral to	Primary aliphatic amine
end full of the organic	litmus paper.	present.
compound, add 5 drops of	A yellow oily liquid is	Nitrosoamine formed.
concentrated hydrochloric acid	formed with no	Secondary aliphatic amine
followed by 1cm ³ of sodium	effervescence.	present.
nitrite solution (care is taken	No observable change even	Tertiary aliphatic amine
that the reaction mixture is	on warming.	present.
maintained at 0°C i.e. at a	No observable change in the	
temperature less than 5° C).	cold, but on warming,	Primary aromatic amine
	effervescence occurs, of a	present.
	colourless gas neutral to	
	litmus paper.	

t)Action of concentrated hydrochloric acid, followed by sodium nitrite solution, sodium hydroxide solution and then 2-naphthol

When concentrated hydrochloric acid is added to an organic compound followed by sodium nitrite solution, sodium hydroxide solution and then 2-naphthol, a bright yellow precipitate (or an orange precipitate) is formed. The precipitate formed is of an azo dye.

$$\begin{array}{c} NH_2N^+NCl^-\\ \hline \\ NaNO_2/Conc.\ HCl\\ \hline \\ O^0C \\ \hline \\ N^+NCl^-OH_{\blacksquare}\\ \hline \\ OH_{N=N}\\ \hline \\ NaphtholHO\\ An\ Azo\ Dye\ (Bright\ yellow/orange\ precipitate) \\ \end{array}$$

u)Action of copper(II) sulphate solution

When copper(II) sulphate solution is added to a solution containing an aliphatic amine, a deep blue solution is formed. This is due to formation of a complex ion, i.e. the tetraammine copper(II) ion which is deep blue.

Test	Observation	Deduction
To 3cm ³ of the organic	A deep blue solution is	Aliphatic amine present.
compound, add 1cm ³ of	formed.	
copper(II) sulphate solution.		

v) Action of hot concentrated sulphuric acid

Hot concentrated sulphuric acid is used to dehydrate alcohols/alkanols which results in formation of alkenes. The alkene formed can thus turn acidified potassium manganate(VII) solution from purple to colourless.

Test	Observation	Deduction
To 1cm ³ of the organic		
compound, add 5 drops of	White fumes which turn	
concentrated sulphuric acid and	acidified potassium	Alcohol dehydrated to form
heat. Pass the vapour formed	manganate(VII) solution	alkene.
through acidified potassium	from purple to colourless	
manganate(VII) solution as		
shown below.		
Organic compound		
+Conc.H ₂ SO ₄		
Heat Acidified potassium		
manganate(VII) solution		

w) Action of dilute sulphuric acid

Dilute sulphuric acid is used normally to precipitate out an aromatic carboxylic acid from a solution of its salt. Usually an aromatic carboxylic acid is dissolved in sodium hydroxide solution and to a portion of the resultant solution of the sodium salt of the aromatic carboxylic acid, dilute sulphuric acid is added.

A white precipitate is formed. Therefore, dilute sulphuric acid can be used to test for the presence of the Benzoate ion.

$$\begin{array}{ccc} COO^{-} & COOH \\ (aq) & + & H^{+}(aq) & - & \\ & & white\ precipitate \end{array}$$

Addition of dilute sulphuric acid can also be used to test for the presence of a basic substance such as an amine. Such a basic substance will dissolve readily in dilute sulphuric acid with no effervescence of a gas. Similarly, dilute sulphuric acid readily dissolves any salt of alower organic acid e.g methanoates, ethanoates and propanoates.

Test	Observation	Deduction
To 1cm ³ of the solution, add		present COO-
A few drops of dilute	A white precipitate is formed	
sulphuric acid.		\bigcirc
To a spatula endful of the	The solid dissolves in the	Basic compound present e.g.
solid, add 4cm ³ of dilute	acid in the cold with no	amine
sulphuric acid and shake well	effervescence.	
to dissolve.		
To a spatula endful of the	The solid dissolves in the	Salt of a lower organic acid e.g
solid, add 4cm ³ of dilute	acid on warming with no	methanoate, ethanoate or
sulphuric acid and warm	effervescence.	propanoate.
gently to dissolve.		

x) Action of dilute hydrochloric acid

Dilute hydrochloric acid can be used in a similar way like dilute sulphuric acid to test for the functional groups stated above.

y) Action of hot dilute sodium hydroxide solution and silver nitrate solution.

This combination of reagents is used in testing for alkylhalides or any other organic compounds that have got halogen atoms as one of their functional groups.

To 5cm³ of the organic compound, 1-2cm³ of dilute sodium hydroxide solution is added. If the compound under analysis is a solid, a spatula endful of the sample is first dissolved in about 5cm³ of water before the dilute sodium hydroxide solution is added and the mixture heated. The -X group is substituted by the –OH group.

$$\begin{array}{cccc}
H & & H \\
R - C - R'(aq) + OH'(aq) & \longrightarrow RCR'(aq) + X'(aq) \\
X & OH
\end{array}$$

The mixture is then cooled and 2-3 drops of silver nitrate solution is added followed by filtration.

$$Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s)$$

Note: The colour of the precipitate AgX(s) depends on which halide X is. In case it is a $C\Gamma$, a white precipitate is formed; if it is a Br^- , a cream precipitate is formed and if it is an Γ , a pale yellow precipitate is formed.

To the residue, dilute ammonia solution is added drop wise until in excess.

$$AgX(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+(aq) + X(aq)$$

To the filtrate, an equal volume of ethanoic acid is added followed by 4-5drops of concentrated sulphuric acid and the mixture heated and cooled. The product is then poured into a beaker containing cold water. A sweet, fruity smell is detected due to formation of an ester (Esterification reaction).

$$\begin{array}{ccc} & H \\ RCR'(aq) + CH_3COOH(aq) & & \underbrace{H^+_{CH_3}}_{C}C-O & C H (aq) -+ H_2O(l) \end{array}$$
 OH

Note: In case the organic compound under analysis has a carboxyl group, instead of addition of Ethanoic acid, Ethanol may be added together with concentrated sulphuric acid in which case esterification also occurs.

Test	Observation	Deduction
a) To a spatula endful of Q, add 4cm ³ of water. To the resultant solution, add 2cm ³ of dilute sodium hydroxide solution.	White crystalline solid dissolves in water to form a colourless solution.	Polaraliphatic compound with a low molecular mass e.g. alcohol, carbonyl, carboxylic acid, ester, alkylhalide.
Shake well and heat the mixture, then cool and add 2-3 drops of silver	Colourless solution miscible with dilute sodium hydroxide solution.	Halidegroup substituted by -OH group.
nitrate solution and filter. Keep both the filtrate and residue.	A white precipitate is formed on addition of silver nitrate solution.	Cl released; from a Chlorocompound.
	A colourless filtrate is formed. A white residue is formed.	Hydroxycompound formed. AgCl(s) formed.
b) To the filtrate obtained in (a) above, add an equal volume of ethanol followed by 4-5 drops of concentrated sulphuric acid. Heat the mixture, cool, then pour the product in a beaker containing cold water.	A sweet, fruity smell.	Ester formed; Carboxyl group(-COOH group) present.
c) To the residue obtained in (a) above, add dilute ammonia solution drop wise until in excess.	White precipitate dissolves in excess dilute ammonia solution.	AgCl(s) dissolves in excess dilute ammonia solution to form $[Ag(NH_3)_2]^+(aq)$. Cl^- confirmed to have been released; from a Chlorocompound

9.4 Worked out Examples on Organic Qualitative Analysis

Worked out Example 9.4.1

You are provided with substance A_1 which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of A ₁ on a spatula end or crucible lid.	Colourless liquid burns with a yellow <u>non-sooty</u> flame.	Aliphatic, saturated compound with a low carbon to hydrogen ratio (with a low carbon content).
b) Shake 2cm³ of A ₁ with 1cm³ of water. Test the resultant with litmus paper. Divide the resultant solution into2parts.	Miscible with water to form a colourless solution.	Polar, aliphatic compound with a low molecular mass etc. Alcohol, Carbonyl compound, Carboxylic acid or Ester.
	Colourless solution has <u>no</u> <u>effect on both blue and red</u> <u>litmus paper</u>	Neutral compound present e.g. alcohol, carbonyl or ester.
i) To the first part, add Brady's Reagent	No observable change.	Carbonyl compound absent.
ii) To the second part, add 2cm ³ of iodine solution followed by sodium hydroxide solution drop by drop until the solution turns pale yellow. Warm gently and then cool under running tap water.	A <u>yellow precipitate</u> with an antiseptic smell.	CHI ₃ (s) formed Alcohol; with the structure: H CH ₃ C'—X OH
c) To 2cm³ of A₁ in a boiling tube, add 4cm³ of acidified potassium permanganate solution and heat. Divide the resultant solution into 2 parts.	Purple solution turns colourless.	<u>Primary</u> or <u>secondary alcohol</u> present.
d) To 1cm ³ of A ₁ , add 1cm ³ of ethanoic acid followed by 5 drops of concentrated sulphuric acid and then warm. Pour the resultant solution into a beaker of cold water.	A sweet, fruity smell.	Esterification reaction. (Ester formed). Primary alcohol present.
(e) To 1cm³ of B ₃ , add anhydrous zinc chloride in concentrated hydrochloric (Lucas' reagent). Shake and allow to stand.	No observable change.	Primary alcohol confirmed present.

f) Comment on the nature of A_1 .

A₁ is an aliphatic, saturated primary alcohol with the structure: CH_3C , that is, ethanol.

Worked out Example 9.4.2

You are provided with substance A_2 which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of A ₂ on a spatula end or crucible lid.	Colourless liquid burns with a yellow non-sooty flame.	Aliphatic, saturated compound with a low carbon to hydrogen ratio(with a low carbon content).
b) Shake 4cm ³ of A ₂ with 3cm ³ of water and divide the resultant solution into 3 parts.	Miscible with water to form a colourless solution.	Polar aliphatic compound with a low molecular masse Alcohol, Carbonyl compound, Carboxylic acid or Ester.
i) Test the first part with litmus paper.	Colourless solution has <u>no</u> <u>effect on both blue and red</u> <u>litmus paper.</u>	Neutral compoundpresent e.g. alcohol or carbonyl.
ii) To the second part, add Brady's Reagent	No observable change.	Carbonyl compound absent.
iii) To the third part, add 2cm ³ of iodine solution followed by sodium hydroxide solution drop by drop until the solution turns pale yellow. Warm gently and then cool under running tap water.	A <u>yellow precipitate</u> with an antiseptic smell.	CHI ₃ (s) formed Alcohol with the structure: H CH ₃ C OH
c) To 2cm ³ of A ₂ in a boiling tube, add 4cm ³ of acidified potassium permanganate solution and heat. Divide the resultant solution into 3 parts.	Purple solution turns colourless.	Reducing agent present e.g. primary or secondary alcohol.
i) To the first part, add Brady's reagent.	A <u>yellow precipitate</u> is formed.	Primary or secondary alcoholoxidized to a Carbowyl.
ii) To the second part, add ammoniacal silver nitrate solution.	No observable change. X	Secondary alcoholoxidized to <u>Ketone.</u>

d) Comment on the nature of A_2 .

 A_2 is an aliphatic, saturated, secondary alcohol with the structure: CH_3C' OH

Worked out Example 9.4.3

You are provided with substance B₁ which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of B ₁ on a spatula end or crucible lid.	White crystalline solid melts to form a colourless liquid which burns with a yellow sooty flame.	Aromatic compound with a high carbon to hydrogen ratio (with a high carbon content) ORLong chain aliphatic, unsaturated compound with a high carbon to hydrogen ratio (with a high carbon content).
b) Shake half a spatula endful of B ₁ with about 4cm ³ of water. Test the resultant solution with litmus paper.	White crystalline solid partially dissolves in water to form a colourless solution. Colourless solution turns blue litmus paper red.	Polar aromatic compound OR Polar aliphatic compound with a high molecular mass e.g. Alcohol, Carbonyl compound, Carboxylic acid or Ester. Acidic compound present e.g. Carboxylic acid or Phenol.
 (c) Divide the solution obtained in (b) above into two parts i) To the first part, add iron(III) chloride solution. ii) To the second part, add a little solid sodium 	No observable change.	Phenol absent. X Carboxylic acid present.
hydrogencarbonate d) To a spatula endful of B ₁ , add 2cm ³ of sodium hydroxide solution and warm to dissolve. Cool the resultant solution and divide the resultant solution into two parts. i) To the first part, add neutral iron (III) chloride solution and heat.	White crystalline solid dissolves in sodium hydroxide solution to form a colourless solution. A reddish-brown precipitate is formed.	Neutralisation reaction. Acidic compound present e.g. Carboxylic acid. C_6H_5COO

ii) To the second part, add dilute	A white precipitate is formed.	$C_6H_5COOH(s)$ formed from $C_6H_5COO^-(aq)$.
sulphuric acid.	formed. X	$from C_6H_5COO^-(aq)$.
e) Carry out a test of your own		
choice to determine the		
functional group of organic		
substance B ₁		
To a spatula endful of B_1 , add		
about 2cm³ of ethanol, shake	<i>Y</i>	X
well to dissolve the solid, then	A sweet, fruity smell.	Esterification reaction
add 5 drops of concentrated		(Ester formed)
sulphuric acid and heat the		Carboxylic acid confirmed present
mixture. Pour the product in a		e.g. Benzoic acid.
beaker of cold water.		e.g. Benzoic acia.

d) Comment on the nature of B_1 .

B is an aromatic, unsaturated carboxylic acid; that is Benzoic acid(ORAromaticunsaturated carboxylic acidwith the carboxyl group directly attached to the Benzene ring).

Worked out Example 9.4.4

You are provided with substance B₂ which is an organic compound. Carry out the following tests to determine its nature.

Test	Observation	Deduction
a) Burn a small amount of B ₂ on a spatula end or porcelain dish.	Colourless liquid burns with a yellow <u>non-sooty</u> flame.	Aliphatic, saturated compound with a low carbon to hydrogen ratio (with a low carbon content).
b) Shake 1cm ³ of B ₂ with 3cm ³ of water. Test the resultant solution with litmus paper. Divide the resultant solution into 2parts.	Miscible with water to form a colourless solution. Colourless solution has no effect on both blue and red litmus paper.	Polar aliphatic compound with a low molecular mass e.g. Alcohol, carbonyl compound, carboxylic acid or ester. Neutral compound present e.g. alcohol or carbonyl.
i) Test the first part, add 2-3 drops of iron(III) chloride solution.	No observable change. X	Phenol absent.
ii) To the second part, add 2-3 drops of acidified potassium dichromate(VI) solution and warm.	No observable change.	Reducing agentabsent. <u>Tertiary alcohol</u> ; or <u>ketone</u> provably present.

(c) To 2-3 drops of B ₂ , add 4-5 drops of 2,4-dinitrophenylhydrazine solution.	Yellow precipitate.	Ketone present. X
d) To 0.5cm ³ of B ₂ , add 1cm ³ of methanol and shake well to dissolve. To the resultant solution, add about 4cm ³ of iodine solution followed by sodium hydroxide solution drop wise until the solution turns pale yellow. Warm the mixture and then allow to stand.	A <u>yellow precipitate</u> with an antiseptic smell.	CHI ₃ (s) formed. Ketone with the structure: CH_3C O
e) To 1cm ³ of B ₂ , add an equal volume of Fehling's solution and heat the mixture.	No observable change. 🗡	Aldehyde absent. Ketone confirmed present.

f) Comment on the nature of B_2 .

A is an aliphatic, saturated, ketone with the structure: CH_3C

Worked out Example 9.4.5

You are provided with substance B₃ which is an organic compound. Carry out the following tests to determine its nature.

Test	Observation	Deduction
(a) Burn a small amount of B ₃ on a spatula end or porcelain dish.	Colourless liquid burns with a yellow sooty flame.	Aromatic compound with a high carbon to hydrogen ratio. OR Long chainaliphatic, unsaturated compound with a high carbon to hydrogen ratio (with a high carbon content).
(b) Shake 1cm ³ of B ₃ with 3cm ³ of water. Test the resultant solution with litmus paper.	Partially miscible with water to form a colourless solution.	Polar aromatic compound ORPolar aliphatic compound with a high molecular mass e.g. Alcohol, carbonyl compound, carboxylic acid or ester.
	Colourless solution has <u>no</u> <u>effect on both blue and red</u> <u>litmus</u> paper.	Neutral compound present e.g. alcohol, carbonyl or ester.
(c) To 3-4 drops of B ₃ , add a few drops of 2,4-dinitrophenylhydrazine solution.	No observable change. X	Carbonyl compoundabsent

(d) To 2 drops of B ₃ , add 2 drops of bromine water.	No observable change. X	Unsaturated compound absent (or saturated compound present)
(e) To 1cm ³ of B ₃ , add 2cm ³ of acidified potassium dichromate(VI) solution. To the resultant product, add 3-4 drops of 2,4-dinitrophenylhydrazine solution.	Orange solution turns green. Then a <u>yellow precipitate</u> is X formed.	Primary or secondary alcoholoxidized to a carlonyl.
(f) To 1cm³ of B ₃ , add 1cm³ of methanoic acid followed by 3-4 drops of concentrated sulphuric acid and heat the mixture. Pour the product in a beaker containing cold water.	No observable change.	Primary alcohol absent.
(g) To 1cm ³ of B ₃ , add anhydrous zinc chloride in concentrated hydrochloric (Lucas' reagent). Shake and allow to stand.	Cloudy solution formed after 7 minutes.	Secondary alcohol present.
(h) To the third part, add 2cm ³ of iodine solution followed by sodium hydroxide solution drop by drop until the solution turns pale yellow. Warm gently and then allow to cool.	No observable change.	Alcohol without the structure: H CH ₃ C OH

(1) Comment on the nature of compound B_3 .	
Compound B_3 is an aromaticsecondary alcoholwithout the structure.	<u>CH₃C</u> — ✓ OH

9.5Practical Exercises on Organic Qualitative Analysis

Experiment 9.5.1

You are provided with substance C which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of C on a dry spatula end or dry crucible lid.		
b) Shake 4cm ³ of C with 3cm ³ of water and test the resultant solution with litmus paper. Divide the solution into four parts.		

i) To the first part, add solid sodium	
carbonate.	
ii) To the second part, add 1cm ³ of	
iodine solution followed by sodium	
hydroxide solution drop by drop until	
the solution turns pale yellow. Warm	
gently and then cool under running	
tap water.	
iii) To the third part, add 2 to 3 drops	
of 2,4-dinitrophenylhydrazine	
solution (Brady's reagent).	
iv) To the fourth part, add 1cm ³ of	
ethanoic acid followed by 5 drops of	
concentrated sulphuric acid and then	
warm. Pour the product in a beaker	
containing cold water. c) To 2cm ³ of C, add 4cm ³ of	
acidified potassium manganate(VII)	
solution and heat. Cool the resultant	
solution and divide it into two parts.	
i) To the first part,2 to 3 drops of 2,4-	
dinitrophenylhydrazine solution	
(Brady's reagent).	
ii) To the second part, add	
ammoniacal silver nitrate solution	
and warm.	
d) To 1cm ³ of C, add 4 drops of	
Lucas' reagent and leave to stand.	
d) Comment on the nature of C.	

Experiment 9.5.2

You are provided with substance D which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of D on a dry	Observation	Deduction
spatula end or dry crucible lid.		
spatula end of dry cruciole nd.		
b) Shake 3cm ³ of C with 3cm ³ of water and		
test the resultant solution with litmus paper.		
Divide the resultant solution into three parts.		
Divide the resultant solution into three parts.		
i) To the first part, add 2-3 drops of 2,4-		
dinitrophenylhydrazine solution (Brady's		
reagent).		
ii) To the second part, add 2cm ³ of Iodine		
solution followed by sodium hydroxide		
solution drop by drop until the solution		
turns pale yellow. Warm gently and then		
cool under running tap water.		
iii) To the third part, add 1cm ³ of ethanoic		
acid followed by 5 drops of concentrated		
sulphuric acid and then warm. Pour the		
product in a beaker containing cold water.		
c) To 2cm ³ of D, add 1cm ³ of acidified		
potassium manganate(VII) solution and heat		
in a boiling tube which is corked and pass		
the vapour produced through 2,4-dinitro-		
phenylhydrazine solution (Brady's reagent)		
which is in a test tube by use of a delivery		
tube as shown below.		
Substance D		
TTT +Acidified Heat potassium		
manganate(VII)		
solution		
2,4-dinitrophenylhydrazine		
solution		
Cool the resultant solution in the boiling		
tube and keep it for use in part (d) below.		
the wife Reep it for the fire part (a) below.	l	

d) To cool resultant solution from part (c) above, add ammoniacal silver nitrate solution. Warm and allow to stand.	
e) To 1cm³ of D, add 4 drops of Lucas' reagentand allow tostand.	
f) Comment on the nature of D.	

Experiment 9.5.3

You are provided with substance E which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of E on a		
dry spatula end or dry crucible lid.		
b) To 1 cm ³ of E, add 1cm ³ of		
water and shake.		
Test the resultant solution with		
Litmus paper.		
Divide the resultant solution into		
three parts.		
-		
i) To the first part, add 2-3 drops		
of sodium carbonate solution.		
::: T		
ii) To the second part, add 2-3		
drops of 2,4-dinitrophenylhydra- zine solution (Brady'sreagent).		
iii)To the third part, add 2-3 drops		
of acidified potassium		
dichromate(VI) solution and heat		
the mixture.		

c) To 1cm ³ of E, add an equal volume of ethanoic acid followed by 5 drops of concentrated sulphuric acid. Heat the mixture and pour the product in a beaker of cold water.	
d) To 1cm³ of E, add 1cm³ of concentrated sulphuric acid. Heat the mixture and pass the gas produced through acidified potassium manganate(VII) solution by use of a delivery tube as shown below. Substance E +Conc.H ₂ SO ₄ Heat Acidified potassium manganate(VII) solution	
e) To 1cm ³ of E, add 4 drops of Lucas' reagent.	
f) Comment on the nature of E.	

Experiment 9.5.4

You are provided with substance F which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of F on a		
spatula end or crucible lid.		

Test	Observation	Deduction
Experiment 9.5.5 You are provided with substance G white dentify its nature.	ich is an organic compound. Car	ry out the following tests to
d) Comment on the nature of F.		
Fehling's solution and boil.		
allow to stand. h) To 1cm ³ of F, add 2cm ³ of		
nitrate solution and warm; then		
volume of ammoniacal silver		
g) To 0.5cm ³ of F,add an equal		
acidified potassium dichromate(VI) solution and heat.		
f) To 1cm ³ of F, add 2cm ³ of		
solution (Brady's reagent).		
2,4-dinitrophenylhydrazine		
e)To 0.5cm ³ of F, add 2-3 drops of		
yellow. Warm gently and then cool under running tap water.		
drop until the solution turns pale		
sodium hydroxide solution drop by		
Iodine solution followed by		
d) To 0.5cm ³ of F, add 2cm ³ of		
of sodium carbonate solution.		
c) To 0.5 cm ³ of F, add 2-3 drops		
pup on		
water and shake. Test the resultant solution with litmus paper.		

Test	Observation	Deduction
a) Burn a small amount of G on a		
dry spatula end or dry crucible lid.		

 b) Shake 4cm³ of G with 2cm³ of water. Test the solution with litmus paper. Divide the resultant solution into four parts. i) To the first part, add saturated sodium hydrogensulphite solution and shake strongly. 		
ii) To the second part, add 2cm ³ of acidified potassium dichromate solution and then heat.		
iii) To the third part, add 2cm³ of iodine solution followed by sodium hydroxide solution drop by drop until the brown solution is discharged. Warm gently and then cool under running tap water. iv) To 1cm³ of silver nitrate solution, add 1cm³ of sodium hydroxide solution followed by		
ammonia solution drop wise until the precipitate just dissolves, then add 2cm ³ of the fourth part and warm, then allow to stand.		
d) Comment on the nature of G.		
Experiment 9.5.6 You are provided with substance H white identify the functional group of H.	ich is an organic compound. Car	rry out the following tests to

Test	Observation	Deduction
a) Burn a small amount of H on a		
spatula end or crucible lid.		
-		

b) Shake half a spatula endful of H	
with about 6cm ³ of water. Test the	
resultant solution with litmus	
paper.	
c) Divide the solution obtained in	
(b) above into five parts.	
i) To the first part, add iron(III)	
chloride solution.	
ii) To the second part, add 2-3	
drops ofsodium	
hydrogencarbonate solution.	
iii) To the third part, add 2,4-	
dinitrophenylhydrazine solution.	
amma opinony my arazina soratron.	
iv) To the fourth part, add 2cm ³ of	
acidified potassium	
manganate(VII) solution and heat.	
, m , 1 , g o 1 , 1 , 2 , 3 , o	
v) To the fifth part, add 2cm ³ of	
Tollen's reagent and warm; then allow the mixture to stand.	
anow the mixture to stand.	
<u> </u>	
d) Identify the functional group of H.	
a) ravinity and rame account group or ri-	

Experiment 9.5.7

You are provided with substance I which is an organic compound. Carry out the following tests to identify its functional group.

Test	Observation	Deduction
a) Burn a small amount of Ion a spatula end or crucible lid.		
b) Shake 2cm³ of I with about 2cm³ of water. Test the resultant solution with litmus paper. Divide the resultant solution into		
four parts.		

a) Burn a small amount of J on a dry spatula end or dry porcelain.		
Test	Observation	Deduction
identify substance J.	nen is an organic compound. C	Larry out the following tests to
Experiment 9.5.8 You are provided with substance J wh	nich is an organic compound (Parry out the following tests to
e) Basing on the result you have obtai	ned in (d) above, identify the f	Tunctional group of 1.
a) Daging on the magnitude have abtain	and in (d) above identify the A	Sunctional angua of I
heat. Pour the product in a beaker of cold water.		
concentrated sulphuric acid and		
d) To 1cm ³ of I , add 1cm ³ of ethanol followed by 5 drops of		
3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
and heat.		
c) To 1cm ³ of I , add soda lime		
powder.		
iv) To the fourth part, add a littlesodium carbonate		
heat.		
iii) To the third part, add neutral iron(III) chloride solution and		
dinitrophenylhydrazine solution.		
ii) To the second part, add 2,4-		
i) To the first part, add 2-3 drops of Universal Indicator.		

a) Burn a small amount of J on a dry spatula end or dry porcelain.	
b) To 1cm ³ of J, add an equal	
volume of sodium hydroxide	
solution.	
, , , , , , , , , , , , , , , , , , , ,	
c) Shake 2cm ³ of J with about 2cm ³	
of water. Test the resultant solution	
with litmus paper.	
Divide the resultant solution into	
three parts.	

i) To the first part, add 2-3 drops of neutral iron(III) chloride solution and heat.	
ii) To the second part, add a little sodium carbonate powder.	
iii) To the third part, add 1cm ³ of acidified potassium dichromate solution and heat.	
d) To 1cm ³ of J, add ammoniacal silver nitrate solution and warm; then allow the mixture to stand.	
e) State the identity of J.	

Experiment 9.5.9

You are provided with substance K which is an organic compound. Carry out the following tests to identify its functional group.

Test	Observation	Deduction
a) Burn a small amount of K on a dry spatula end or dry crucible lid.		
b) Shake half a spatula endful of G with about 5cm³ of water. Test the resultant solution with litmus paper.		
c) Divide the solution obtained in (b) above into two parts. i) To the first part, add 2-3 drops ofiron(III) chloride solution.		

ii) To the second part, add a little solidsodium hydrogencarbonate.	
d) To a spatula endful of K, add about 2cm ³ of dilute sodium hydroxide solution and warm to dissolve. Cool and divide the resultant solution into two parts.	
i) To the first part, add 2-3 drops of neutral iron(III) chloride solution and heat.	
ii) To the second part, add dilute sulphuric acid.	
e) To half a spatula endful of K, add 2 spatula endfuls of soda lime and warm the mixture, first gently and then more strongly.	
f) Using spatula endfuls of K, carry out a test of your own choice to identify the functional group of K.	
	l ·

Experiment 9.5.10

You are provided with substance L which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of L on a dry spatula end or dry crucible lid.		
b) Shake two spatula endfuls of L with about 6cm ³ of water. Test the resultant solution with		
litmus paper. Divide the resultant solution		
into four portions.		
i) To the first portion, add sodium hydroxide solution.		
ii) To the second portion, add a little solid sodium hydrogencarbonate.		
iii) To the third portion, add 1cm ³ of bromine water.		
iv) To the fourth part, add neutral iron(III) chloride solution drop wise as you shake.		
d) Comment on the nature of L.		

Experiment 9.5.11

You are provided with substance M which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of M		
on a dry spatula end or dry		
porcelain.		
b) Shake half a spatula endful of L with about 7cm ³ of water		
and warm to dissolve. Test the resultant solution with litmus		
paper.		
Divide the solution obtained in (b) above into three parts.		
i) To the first part, add iron(III) chloride solution.		
···		
ii) To the second part, add a little solid sodium		
hydrogencarbonate.		
nyarogenearsonate.		
iii) To the third part, add dilute sulphuric acid.		
c) To a spatula endful of M, add about 2cm ³ of dilute		
sodium hydroxide solution and		
warm.		
To the regultant solution and		
To the resultant solution, add 2-3 drops of neutral iron(III)		
chloride solution and heat.		
d) To a spatula endful of M,		
add 2cm ³ of methanol, shake well to dissolve the solid and		
then add 5 drops of		
concentrated sulphuric acid		
and heat the mixture. Pour the		
product in a beaker containing		
cold water.		

d) Comment on the nat	ture of M.		
		 	• •

Experiment 9.5.12

You are provided with substance N which is an organic compound. Carry out the following tests to identify its nature.

Test	Observation	Deduction
a) Burn a small amount of N on a dry spatula end or dry porcelain.	Observation	Deduction
b) Shake a spatula endful of N with about 2cm³ of methanol. Add 1cm³ of water and test the resultant solution with litmus paper. Divide the resultant solution into two portions.		
i) To the first portion, add iron(III) chloride solution.		
ii) To the second portion, add an equal volume of sodium hydrogencarbonate solution.		
c) To a spatula endful of N in 3cm ³ of sodium hydroxide solution and warm to dissolve. Cool the resultant solution and divide it into two portions.		
i) To the first portion, add neutral iron(III) chloride solution and heat.		
ii) To the second part, add dilute hydrochloric acid.		

d) To half a spatula endful of N, add 2 spatula endfuls of soda lime and warm the mixture, first gently and then more strongly.	
d) Comment on the nature of N.	

Experiment 9.5.13

You are provided with substance P which is an organic compound. Carry out the following tests to identify its nature.

Toot	Observation	Doduction
Test	Observation	Deduction
a) Burn a small amount of P on a dry spatula end or crucible lid.		
a dry spatula elid of crucible lid.		
b) Shake two spatula endfuls of		
b) Shake two spatula endfuls of P with about 4cm ³ of methanol.		
Add 2cm ³ of water and test the		
resultant solution with litmus		
paper.		
Divide the resultant solution		
into five portions.		
i) To the first portion,		
addiron(III) chloride solution.		
ii) To the second portion, add		
an equal volume of sodium		
carbonatesolution.		
iii) To the third part, add 2-3		
drops of Brady's reagent.		
iv) To the fourth portion, add		
2cm ³ of acidified potassium		
dichromate(VI) solution and		
heat.		
v) To the fifth portion, add		
ammoniacal silver nitrate		
solution and warm; then allow		
to stand.		

c) To a spatula endful of P in		
3cm ³ of sodium hydroxide	!	
solution and warm to dissolve.		
Cool the resultant solution and		
keep the cold resultant solution		
for part (d) below.		
d) To 1cm ³ of the cold resultant		
solution obtained in (c) above,	!	
adddilute sulphuric acid.		
_		
e) Comment on the nature of P.		
e) comment on the nature of f		
	• • • • • • • • • • • • • • • • • • • •	

Experiment 9.5.14

You are provided with substance Q which is an organic compound. Carry out the following tests to determine the nature of substance Q. Record your observations and deductions in the table below.

		T
Test	Observation	Deduction
a) Burn a small amount of Q on a dry		
spatula end or dry porcelain.		
b) Shake half a spatula endful of Q		
with about 2cm ³ of sodium hydroxide		
solution.		
c) Shake a spatula endful of Q with		
about 5cm ³ of water. Divide the		
resultant solution into four portions.		
_		
i) To the first portion, add 2-3 drops		
of litmus solution.		
ii) To the second portion, add an		
equal volume of sodium		
carbonatesolution.		
iii) To the third portion, add 2-3		
drops of		
2,4-dinitrophenylhydrazine solution		
(Brady's reagent).		

iv) To the fourth portion, add 2-3 drops of iron(III) chloride solution and warm.	
7	
d) To a spatula endful of Q, add 4cm ³	
of water. To the resultant solution,	
add 2cm ³ of dilute sodium hydroxide	
solution. Shake well and heat the	
mixture, then cool and add 2-3 drops of silver nitrate solution and filter.	
Keep both the filtrate and residue.	
e) To the filtrate obtained in (d)	
above, add an equal volume of	
ethanol followed by 4-5 drops of	
concentrated sulphuric acid. Heat the	
mixture, cool then pour the product in	
a beaker containing cold water.	
-	
f) To the residue obtained in (d)	
above, add dilute ammonia solution	
drop wise until in excess.	
g) Comment on the nature of Q.	

CHAPTER TEN 10.0 CHEMICAL ENERGETICS

10.1 Introduction

Chemical Energetics is a branch of chemistry that deals with heat changes that take place in a variety of chemical reactions.

The total energy content of a substance stored in its bonds is known as the enthalpy, H. Therefore, when there is a change in the total energy content of the reacting system at the end of a chemical reaction, then we have enthalpy change, ΔH .

The practical branch of Chemical Energetics is utilized in the determination of:

- Concentrations of solutions (standardization of solutions).
- Enthalpy of neutralization of a base by an acid/an acid by a base.
- Enthalpy of displacement of copper(II) ions by magnesium, zinc,iron, e.t.c.
- Enthalpy of dissociation of weak acids (organic acids).
- Basicity of an acid.

10.2 Worked out Examples on Chemical Energetics

Worked out example 10.2.1

You are provided with the following:

FA1 which isnitric acid

FA2 which is sodium hydroxide solution

Solid T which is anhydrous sodium carbonate

You are required to determine the concentration of sodium hydroxide in grams per litre by thermometric titration with nitric acid

Procedure I

Weigh accurately, 15.4g of T into a clean beaker. Add 100cm³ of water and stir well to dissolve. Transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 20 or 25cm³ of FA3 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA1 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

Mass of container + T	54.0	X
1,1000 01 00110011101 01011011111111111		12
Mass of solid T	15.4	<i>y</i> g
Mass of solid T Volume of pipette used	25	\sim cm ³

Final burette reading (cm ³)	19.50	19.30	29.30
Initial burette reading (cm ³)	0.00	0.00	10.00
Volume of FA1 used (cm ³)	19.50	19.30	19.30

Values used to calculate average $\frac{19.30, 19.30}{2} = 19.30 \dots \text{cm}^3$ Average volume of FA1 used $\frac{\left(\frac{19.30 + 19.30}{2}\right)}{2} = 19.30 \dots \text{cm}^3$

Ouestions

a) Calculate the molar concentration of:

Molar Mass of Na₂CO₃ =
$$[(23x2)+(12x1)+(16x3)]g$$

= $(46+12+48)g$

= 1069

106g of sodium carbonate contain 1 mole

15.4g of sodium carbonate contain
$$\left(\frac{1}{106}\right)$$
 moles = 0.145 moles

250cm³ of FA3 contain 0.145 moles of sodium carbonate 1000cm³ of FA3 contain $\left(\frac{0.145}{250} \times 1000\right)$ woles of sodium carbonate = 0.58 M

ii) nitric acid in FA1.

$$Na_2CO_3(aq) + 2HNO_3(aq) \rightarrow 2NaNO_3(aq) + H_2O(l) + CO_2(g)$$

$$1000cm^3 \text{ of } FA3 \text{ contain } 0.58 \text{ moles of sodium carbonate}$$

$$25cm^3$$
 of FA3 contain $\left(\frac{0.58}{1000} \times 25\right)$ moles of sodium carbonate

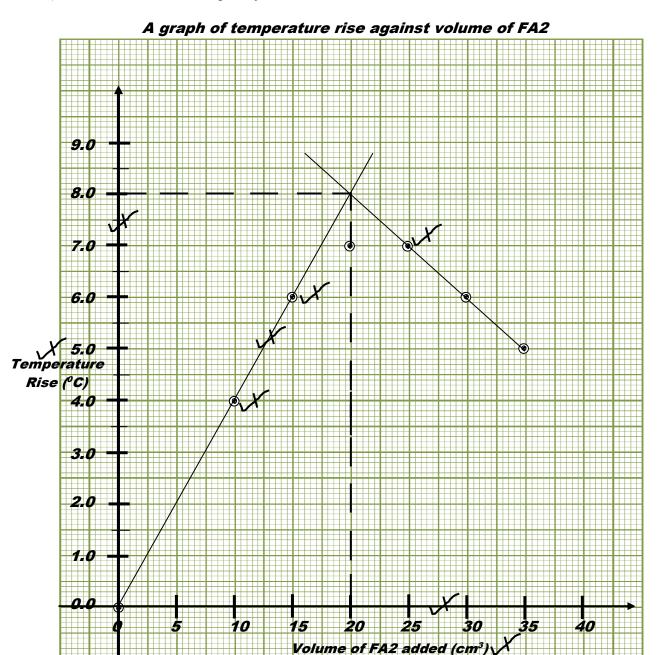
Moles of nitric acid =
$$(2xmoles of sodium carbonate)$$

$$= (2x0.0145)$$

= (2x0.0145) X = **0.029** moles of nitric acid

19.30cm³ of FA1 contain 0.029 moles of nitric acid

1000cm³ of FA1 contain
$$\left(\frac{0.029}{19.30}x \ 1000\right)$$
 moles of nitric acid = 1.503 M $\simeq 1.5 M$


Procedure II

- i) Using a measuring cylinder, measure 30cm³ of FA1 into a clean plastic beaker.
- ii) Using a thermometer, note and record the initial temperature, T₀ of solution FA1.
- iii) Using a burette, run 10cm³ of FA2 into the FA1 solution in the plastic beaker. Stir the mixture with the thermometer and note the maximum temperature, T reached by the mixture.
- iv) Repeat procedures (i) to (iii) for volumes of FA2 added equal to 15, 20, 25, 30 and 35cm³, and record your results in the table below.

Volume of FA2 added (cm ³)	0	10	15	20	25	30	35
Maximum temperature of mixture, T (⁰ C)	25.0 X	29.0 X	31.0 X	32.0 X	32.0 X	31.0	30.0 X
Temperature rise (T- T_0) (0 C)	0.0	4.0 🔏	6.0 X	7.0 X	7.0 🔏	6.0 X	5.0 X

Questions

- a) Plot a graph of temperature rise against volume of FA2 added.
- b) By use of the graph, determine the:

c) Calculate the:

i)number of moles of nitric acid which reacted.

$$1000cm^3$$
 of FA1 contain 1.5 moles of nitric acid
 $30cm^3$ of BA1 contain $\left(\frac{1.5 \times 30}{1000} \times 30\right)$ moles of nitric acid
=0.045 moles of nitric acid

ii) molar enthalpy of neutralization of nitric acid. (Density of mixture = 1g cm⁻³; specific heat capacity of mixture= $4.2 \text{ Jg}^{-1.0}\text{C}^{-1}$).

Total volume of mixture at neutralization point = (30+20)cm³ = 50cm³ Total mass of mixture at neutralization point = (Density x volume)

$$= (1 \times 50)g - 50 g$$

= $(1 \times 50)g$ **50 g** $\Delta H = (Mass\ of\ mixture)x(Specific\ heat\ capacity\ of\ mixture)x(Max.\ temp.\ rise)$

$$= (50 \times 4.2 \times 8.0) J = 1680 J$$

$$NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l)$$

Moles of water = (1xmoles of nitric acid)

$$= (1 \times 0.045)$$

= 0.045 moles of water

0.045 moles of water are formed with evolution of 1680 J

1 mole of water is formed with evolution of: $\left(\frac{1680}{0.045}\right) Jmol^{-1}$ $= 37333.33 Jmol^{-1}$ $= \left(\frac{37333.33}{1000}\right) kJmol^{-1}$ $= 37.33kJmol^{-1}$

iii) concentration of sodium hydroxide in grams per litre. (Na=23, O=16, H=1)

Moles of sodium hydroxide = (1xmoles of nitric acid)Moles of sodium hydroxide = (1×0.045)

=0.045 moles of sodium hydroxide

20cm³ of FA2 contain 0.045 moles of sodium hydroxide

1000cm³ of FA2 contain $\left(\frac{0.045}{20}x1000\right)$ moves of sodium hydroxide = 2.25 moles of sodium hydroxide per litre

Molar mass of NaOH = [(23x1) + (16x1) + (1x1)] + 40g1 mole of sodium hydroxide weighs 40g

2.25 moles of sodium hydroxide weigh: (40×2.25) g

=90 grams per litre

Worked out example 10.2.2

You are provided with the following:

HA1 which is 2.0M sulphuric acid

HA2 which is sodium hydroxide solution

HA3 which is 2.0M ethanoic acid

You are required to determine the:

- i) concentration of sodium hydroxide in HA2 in moldm⁻³.
- ii) molar enthalpy of neutralisation between sulphuric acid and sodium hydroxide, and that between ethanoic acid and sodium hydroxide.
- iii) enthalpy of dissociation of ethanoic acid.

Theory

Sodium hydroxide reacts with sulphuric acid and ethanoic acid according to the equations below.

$$2\text{NaOH}(aq) + \text{H}_2\text{SO}_4(aq) \rightarrow \text{Na}_2\text{SO}_4(aq) + 2\text{H}_2\text{O}(1)$$

$$NaOH(aq) + CH_3COOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$$

Ethanoic acid dissociates according to the following equation:

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$$

Produre I

- i) Place HA1 into the burette.
- ii) Using a measuring cylinder, measure and transfer 40cm³ of HA2 into a plastic beaker. Measure and record its temperature into Table I below.
- iii) Add 5cm³ of HA1 from the burette. Stir the mixture carefully with a thermometer and record the highest temperature reached by the mixture in Table I below.
- iv) Repeat procedure (iii) at intervals as shown in the table below.

Table I

77.1 077.1 (3)	_		4.0		• •		2.0
Volume of HA1 (cm ³)	0	5	10	15	20	25	30
Highest temperature reached (⁰ C)	22.0 🔏	28.0 X	32.5 X	36.0 X	39.0 X	38.0 X	36.0 X

Procedure II

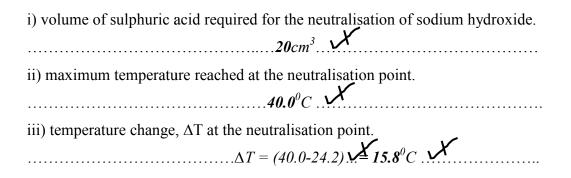
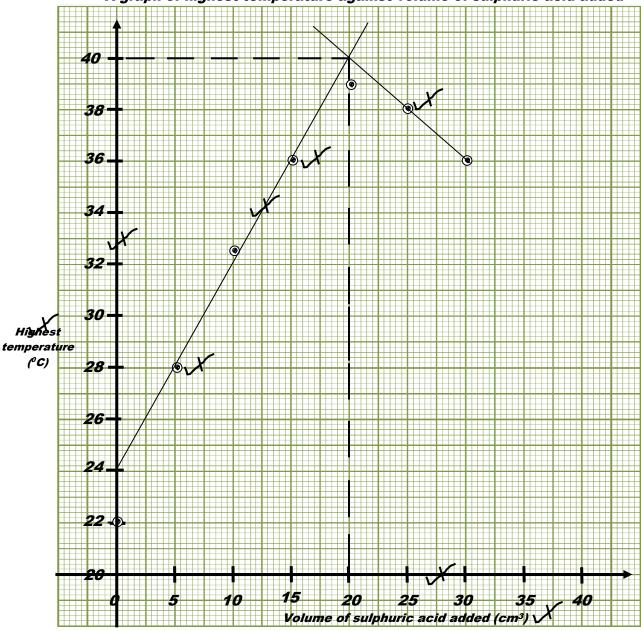

- i) Place HA3 into the burette.
- ii) Using a measuring cylinder, measure and transfer 40cm³ of HA2 into a plastic beaker. Measure and record its temperature into Table II below.
- iii) Add 5cm³ of HA3 from the burette. Stir the mixture carefully with a thermometer and record the highest temperature reached by the mixture in Table II below.
- v) Repeat procedure (iii) at intervals as shown in Table II below.

Table II


Volume of HA1 (cm ³)	0	5	10	15	20	25	30
Highest temperature reached (⁰ C)	22.0	26.0 X	29.0 X	31.0 X	32.0 X	31.0 X	30.0 X

Ouestions

- a) Plot a graph of highest temperature against volume of sulphuric acid added.
- b) Using the graph plotted in (a) above, determine the:

c) Calculate the concentration of sodium hydroxide in HA2 in moldm ⁻³ . 1000cm ³ of HA1 contain 2.0 moles of sulphuric acid
$20cm^3$ of HA1 contain $\left(\frac{2.0}{1000}x20\right)$ mees of sulphuric acid
=0.04 moles of sulphuric acid
Moles of NaOH = $(2xmoles of sulphuric acid)$
= $(2x0.04)$ = 0.08moles of sodium hydroxide $40cm^3$ of HA2 contain 0.08 moles of sodium hydroxide
$1000cm^3$ of HA2 contain $\left(\frac{0.08}{40}x\ 1000\right)$ moles of sodium hydroxide
Concentration of sodium hydroxide in $HA2=2$ moldm ⁻³
d) Calculate the molar enthalpy of neutralisation between sulphuric acid and sodium hydroxide in kJmol ⁻¹ .(Density of solution=1gcm ⁻³ , Specific heat capacity of solution = 4.2 Jg ⁻¹ °C ⁻¹).
Total volume of mixture at neutralisation point = $(40+20)^2 = 60$ cm ³ Mass of mixture = (density x volume)
=(1x60)g
$\Delta H = mass \ x \ specific \ heat \ capacity \ x \ temperature \ change$
= (60x4.2x15.8)J
= - $3981.6 J$ Moles of water = $(2xmoles of sulphuric acid)$ = $(2x0.04)$
= 0.08 moles of water
0.08 moles of water are formed with evolution of 3981.6J
I mole of water is formed with evolution of $\left(\frac{3981.6}{0.08}\right)J$
$= -49770 \operatorname{Jmol}^{-1} \times = -49.77k \operatorname{Jmol}^{-1}$ $= \left(\frac{-49770}{1000}\right) k \operatorname{Jmol}^{-1} = -49.77k \operatorname{Jmol}^{-1}$
e) Plot a graph of highest temperature againstvolume of ethanoic acid added.f) Using the graph plotted in (e) above, determine the:
i) volume of ethanoic acid required for the neutralisation of sodium hydroxide
$18cm^3$
ii) maximum temperature reached at the neutralisation point.
$32.4^{\circ}C$
iii) temperature change, ΔT at the neutralisation point.
$\mathcal{L}_{\mathcal{A}}$
g) Calculate the enthalpy of neutralisation between ethanoic acid and sodium hydroxide in kJmol⁻¹.
Total volume of mixture at neutralisation point = $(40 + 18) = 8cm^3$

Mass of mixture = (density x volume)
$$= (1x58)g = 36g$$

$$\Delta H = mass x specific heat capacity x temperature change$$

$$= (58x4.2x8.8)J$$

$$= -2143.68 J$$

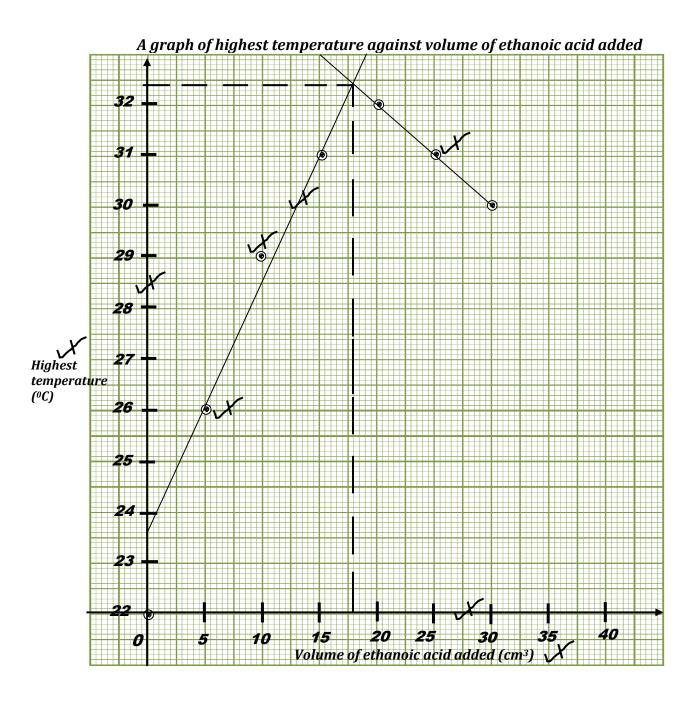
$$1000cm^3 \text{ of } FA3 \text{ contain } 2.0 \text{ moles of ethanoic acid}$$

$$18cm^3 \text{ of } FA3 \text{ contain } \left(\frac{2.0}{1000} \times 18\right) \text{ moles of ethanoic acid}$$

$$= 0.036 \text{ moles of ethanoic acid}$$

$$= (1x0.036) = 0.036 \text{ moles of water}$$

$$0.036 \text{ moles of water are formed with evolution of } 2143.68J$$


$$1 \text{ mole of water is formed with evolution of } \left(\frac{2143.68}{0.036}\right)J$$

$$= -59546.67Jmol^{-1}$$

$$= \left(\frac{-59546.67}{1000}\right) = 39.55kJmol^{-1}$$

h) Determine the enthalpy of dissociation of ethanoic acid in kJmol⁻¹.

Enthalpy of dissociation of ethanoic acid = (-49.77-59.55) kJmol⁻¹ \times \times = (-49.77+59.55) kJmol⁻¹ = +9.78 kJmol⁻¹

Worked out example 10.2.3

You are provided with the following:

FA1 which is a solution of 1.0M copper(II) sulphate pentahydrate, CuSO₄.5H₂O

Solid **M** which is zinc metal powder.

You are required to determine the molar enthalpy of displacement of copper(II) ions by zinc metal.

Procedure

- i) Using a measuring cylinder, measure and transfer 30cm³ of FA1 into a clean plastic beaker. Measure and record the initial temperature of FA1.
- ii) Weigh accurately, 2.5g of zinc metal powder and add it to the FA1 solution in the plastic beaker. Stir well with a thermometer for about 20 seconds. Record the temperature reading of the mixture at the end of every 1 minute as shown in the table below.

Time (minutes)	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
Temperature (°C)	27.0	46.0	62.5 🔏	71.5 X	70.0	67.5 X	65.0 X	62.5 🔏

Ouestions

- (a) Plot a graph of temperature change against time.
- (b) Using the graph you have plotted, determine the maximum temperature change, ΔT_{max} for the reaction....= $(77.5 27.0)^{\circ}C = 50.5..$.
- (c) Determine the heat evolved in kJ mol⁻¹ in the process of the displacement reaction in kJ mol⁻¹.

(Density of water = 1 gcm^{-3} , Specific heat capacity of water = $4.2 \text{ Jg}^{-1.0} \text{C}^{-1}$).

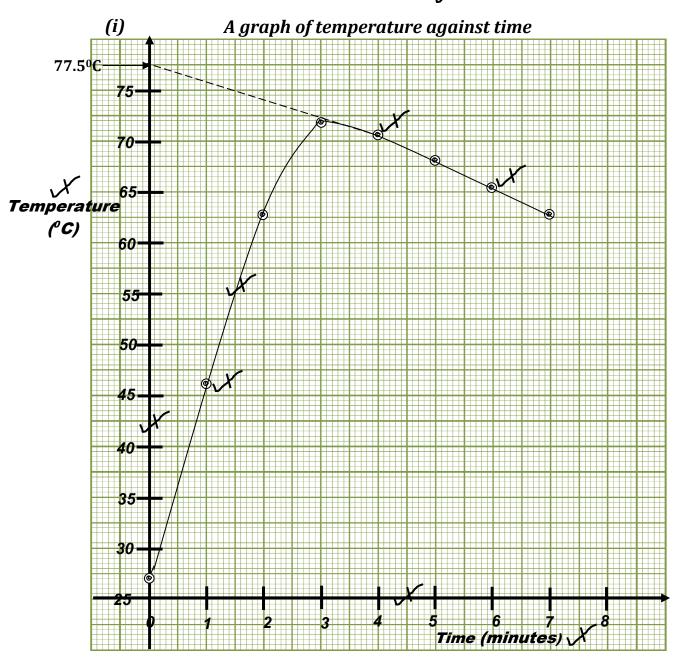
Volume of solution =
$$30 \text{ cm}^3$$

Mass of solution = (volume x density) = $(30 \text{ x } 1) = 30 \text{g}$
 $\Delta H = (\text{mass x specific heat capacity x temperature change}) = (30 \text{ x } 4.2 \text{ x } 50.5) \textbf{J} = 6363 \text{ J}$
 $= \left(\frac{6363}{1000}\right) kJ$

- d) Calculate the:
 - i) number of moles of copper(II) ions present in the volume of FA1 used in the experiment.

1000cm³ of FA1 contan 1.0 moles of copper(II) ions.

$$30cm^{3} \text{ of } FA1 \text{ contain } \left(\frac{1.0}{1000} \times 30\right) mo Ns$$


$$= 0.03 \text{ moles}$$

ii) mass of zinc metal used in the displacement reaction. (Zn = 65)

$$Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(s)$$
Moles of Zinc metal = (1xmoles of copper(II) ions)
= (1x0.03) **3 moles**

1 mole of Zinc metal weighs 65g
0.03 moles of Zinc metal weigh
$$(65x0.03)g$$

=1.95g

- (iii) molar enthalpy of displacement of copper(II) ions by zinc metal.
- 0.03 moles of copper(II) ions evolve 6.363kJ I mole of copper(II) ions evolve $\left(\frac{6.363}{0.03}\right) kJ mol^{-1}$ $= -212.1 kJ mol^{-1}$ e) Outline at least **four (4)** assumptions made in this experiment.
- - i) No heat is lost to the sorroundings.
 - ii) The heat capacity of the beaker is negligible.
 - iii) The specific heat capacity of the solution is equal to that of water.
 - iv) The density of the solution is equal to that of water.

10.3 Practical Exercises on Chemical Energetics

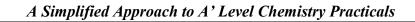
Experiment 10.3.1

You are provided with the following:

FA1 which is a 0.5M solution of the acid, H_xP .

FA2 which is 1M potassium hydroxide solution.

You are required to determine the basicity of the acid, H_xP and the molar enthalpy of neutralisation of the acid by potassium hydroxide.


Procedure

- i) Measure and transfer 40cm³ of FA1 into a clean plastic beaker.
- ii) By use of a thermometer, determine and record the initial temperature of FA1, t₁ and the initial temperature of FA2, t₂.
- iii) By use of another measuring cylinder, measure and add 10cm³ of FA2 to the 40cm³ of FA1 in the plastic beaker. Stir the mixture gently with the thermometer and record the maximum temperature reached by the mixture, t₄.
- iv) Pour away the mixture and rinse the plastic beaker thoroughly with water.
- v) Repeat procedure (i) to (iv) using the volumes of FA1 and FA2 indicated below. In a similar way, also indicate the values of t_1 , t_2 , t_3 , plus the temperature change, $\Delta t = (t_4-t_3)$ for each of the experiments carried out.

			1	1		1	
Experiment number	1	2	3	4	5	6	7
Volume of FA1 (cm ³)	40	35	30	25	20	15	10
Volume of FA2 (cm ³)	10	15	20	25	30	35	40
Initial temperature of FA1, t ₁ (⁰ C)							
Initial temperature of FA2, t ₂ (⁰ C)							
Average temperature, $t_3 = \left(\frac{t_1 + t_2}{2}\right)^{(0)}$							
Highest temperature reached, t ₄ (⁰ C)							
Temperature change, $\Delta t = (t_4-t_3) (^{0}C)$							

Questions

Questions	
a) Plot a graph of Δt against volume of FA1.	
p) From the graph plotted, determine the following:	
i) Maximum value of Δt ⁰ C	
ii) Volume of the the acid, H _x T in FA1 that is required for neutralisation of the potassium	
hydroxide inFA2.	
c	m^3
iii) Volume of potassium hydroxide in FA2 that reacted with the acid, H _x P in FA1 to give the	i ,
maximum value of Δt cr	n^3

GRAPH PAGE

Your Guide to the Most Recent Explorations in Chemistry Page 312

c) Determine the: i) stoichiometry between the acid H _x P and the potassium hydroxide.
ii) basicity of the acid, H_xP .
d) Calculate the molar heat of neutralisation of the acid, H_xP . (Density of solution=1gcm ⁻³ , Specific heat capacity of solution = 4.2 $Jg^{-1} {}^{0}C^{-1}$)

Experiment 10.3.2

You are provided with the following:

FA1 which is sodium hydroxide solution

FA2 which is nitric acid

Solid F which is anhydrous sodium carbonate

You are required to determine the concentration of sodium hydroxide by thermometric titration with hydrochloric acid.

Procedure .	Ī
-------------	---

Weigh accurately, 12.3g of F into a clean beaker. Add 100cm³ of water and stir well to dissolve. Transfer the solution into a 250cm³ volumetric flask and make up to the mark with distilled water. Label the solution FA3.

Pipette 20 or 25cm³ of FA3 into a clean conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA2 from the burette until the end point is reached. Repeat the titration until you obtain consistent results. Record your results in the table below.

•				
Mass of container +	· F		g	
Mass of container			g	
Mass of solid F			g	
Volume of pipette u	ısed		cm ³	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of FA2 used (cm ³)				
Values used to calculate average Average volume of FA2 used				2
Questions				
a) Determine the concentration of:				
i) sodium carbonate in FA3 in mo	ol dm ⁻³ .(Na=23,	C=12, O=16)		

	2							
ii) hydrochloric acid in FA2 in mol dn	1 ⁻³ .							
cedure II								
Jsing a measuring cylinder, measure 15cr								
Using a thermometer, note and record the	initial	temperat	ture Ta	of sol	ution F	A2		
TI: 1 44 5 3 CEA1: 4 41	E 4 2	1 4	· 41	1 4.	1 1	Q.: 41	. ,	1
Using a burette, run 5cm ³ of FA1 into the	e FA2	solution	in the	plastic	beaker.	Stir th	e mixtu	re with
hermometer and note the maximum temp	e FA2 : erature	solution , T reacl	in the ned by	plastic the mix	beaker. xture.	Stir th		
	e FA2 s erature FA1 ac	solution , T reach lded equ	in the ned by al to 1	plastic the mix 10,15, 2	beaker. kture. 20, 25,	Stir th	l35cm ³ ,	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of ladding an extra 5cm ³ to the solution in the	e FA2 erature FA1 ac plastic	solution , T reach lded eque beakers	in the ned by all to 1 and rec	plastic the mix 10,15, 2 ord yo	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each tin
hermometer and note the maximum temp Repeat procedures (iii) for volumes of ladding an extra 5cm ³ to the solution in the Volume of FA1 added (cm ³)	e FA2 erature FA1 ac plastic	solution , T reach lded equ	in the ned by al to 1	plastic the mix 10,15, 2	beaker. kture. 20, 25,	Stir th	l35cm ³ ,	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of ladding an extra 5cm ³ to the solution in the Volume of FA1 added (cm ³)	e FA2 erature FA1 ac plastic	solution , T reach lded eque beakers	in the ned by all to 1 and rec	plastic the mix 10,15, 2 ord yo	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of ladding an extra 5cm ³ to the solution in the Volume of FA1 added (cm ³)	e FA2 erature FA1 ac plastic	solution , T reach lded eque beakers	in the ned by all to 1 and rec	plastic the mix 10,15, 2 ord yo	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of I adding an extra 5cm³ to the solution in the Volume of FA1 added (cm³) Maximum temperature of mixture, T (°C)	e FA2 erature FA1 ac plastic	solution , T reach lded eque beakers	in the ned by all to 1 and rec	plastic the mix 10,15, 2 ord yo	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of I adding an extra 5cm³ to the solution in the Volume of FA1 added (cm³) Maximum temperature of mixture, T (°C)	e FA2 erature FA1 ac plastic	solution , T reach lded eque beakers	in the ned by all to 1 and rec	plastic the mix 10,15, 2 ord yo	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of Indding an extra 5cm³ to the solution in the Volume of FA1 added (cm³) Maximum temperature of mixture, T (°C) Temperature rise (T-T ₀) (°C) Questions a) Plot a graph of temperature rise against	e FA2 acreture FA1 acretice plastice	solution Treach lded eque beakers 5	in the med by all to 1 and rec	plastic the mix 0,15, 2 ord you	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of Indding an extra 5cm³ to the solution in the Volume of FA1 added (cm³) Maximum temperature of mixture, T (°C) Temperature rise (T-T ₀) (°C) Questions a) Plot a graph of temperature rise against by By use of the graph you have plotted, d	e FA2 acreture FA1 acretice plastice	solution Treach lded eque beakers 5	in the med by all to 1 and rec	plastic the mix 0,15, 2 ord you	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each ti
hermometer and note the maximum temp Repeat procedures (iii) for volumes of Indding an extra 5cm³ to the solution in the Volume of FA1 added (cm³) Maximum temperature of mixture, T (°C) Temperature rise (T-T ₀) (°C) Questions a) Plot a graph of temperature rise against	e FA2 acreture FA1 acretice plastice	solution Treach lded eque beakers 5	in the med by all to 1 and rec	plastic the mix 0,15, 2 ord you	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each pelow
hermometer and note the maximum temp Repeat procedures (iii) for volumes of Indding an extra 5cm³ to the solution in the Volume of FA1 added (cm³) Maximum temperature of mixture, T (°C) Temperature rise (T-T ₀) (°C) Questions a) Plot a graph of temperature rise against by By use of the graph you have plotted, d	e FA2 acreture FA1 acretice plastice	solution Treach lded eque beakers 5	in the med by all to 1 and rec	plastic the mix 0,15, 2 ord you	beaker. kture. 20, 25, ur resul	Stir th 30 and ts in th	l35cm ³ , e table l	each oelow.

GRAPH PAGE

c) Calculate the: i)number of moles of hydrochloric acid which reacted.
ii) molar enthalpy of neutralization of nitric acid. (Density of mixture = 1g cm^{-3} ; specific heat capacity of mixture = $4.2 \text{ Jg}^{-1.0}\text{C}^{-1}$).
iii) concentration of sodium hydroxide in grams per litre. (Na=23, O=16, H=1)

Experiment 10.3.3

You are provided with the following:

FA1 which is 2.5M sulphuric acid

FA2 which is sodium hydroxide solution

FA3 which is 2.5M methanoic acid

You are required to determine the:

- i) concentration of sodium hydroxide in FA2 in moles per litre.
- ii) molar enthalpy of neutralisation between sulphuric acid and sodium hydroxide, and that betweenmethanoic acid and sodium hydroxide.
- iii) enthalpy of dissociation of methanoic acid.

Theory

Sodium hydroxide reacts with sulphuric acid and Methanoic acid according to the equations below.

$$2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$

$$NaOH(aq) + HCOOH(aq) \rightarrow HCOONa(aq) + H_2O(l)$$

Methanoic acid dissociates according to the following equation:

$$HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$$

Produre I

- i) Place FA1 into the burette.
- ii) Using a measuring cylinder, measure and transfer 40cm³ of FA2 into a plastic beaker. Measure and record its temperature into Table I below.
- iii)Add 5cm³ of FA1 from the burette. Stir the mixture carefully with a thermometer and record the highest temperature reached by the mixture in Table I below.
- iv) Repeat procedure (iii) at intervals, each time adding an extra 5cm³ of FA1 as shown in table Ibelow

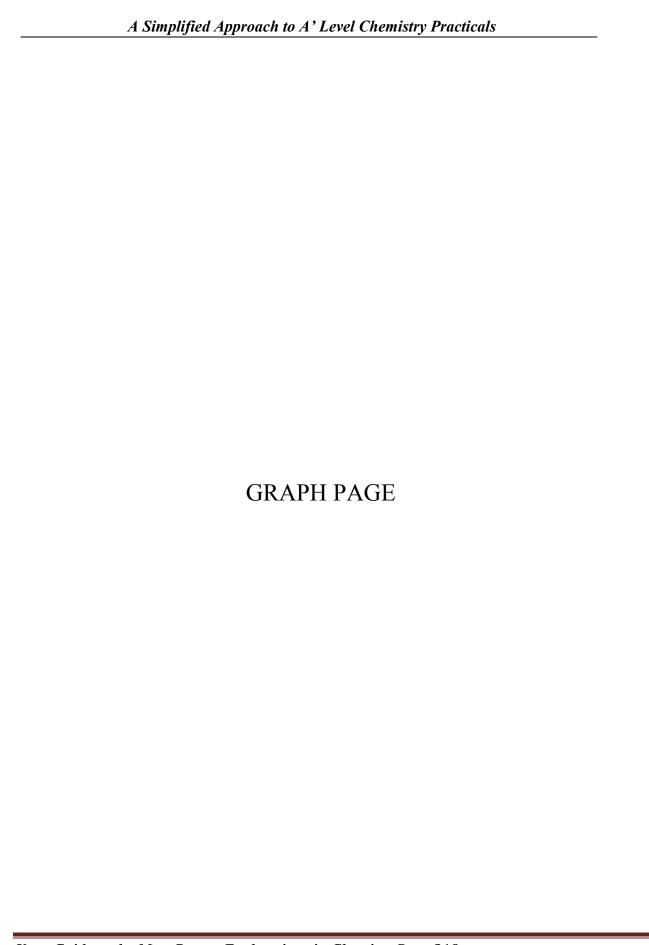
Table I

Volume of FA1 (cm ³)	0	5	10	15	20	25	30	35	40
Highest temperature reached (⁰ C)									

Procedure II

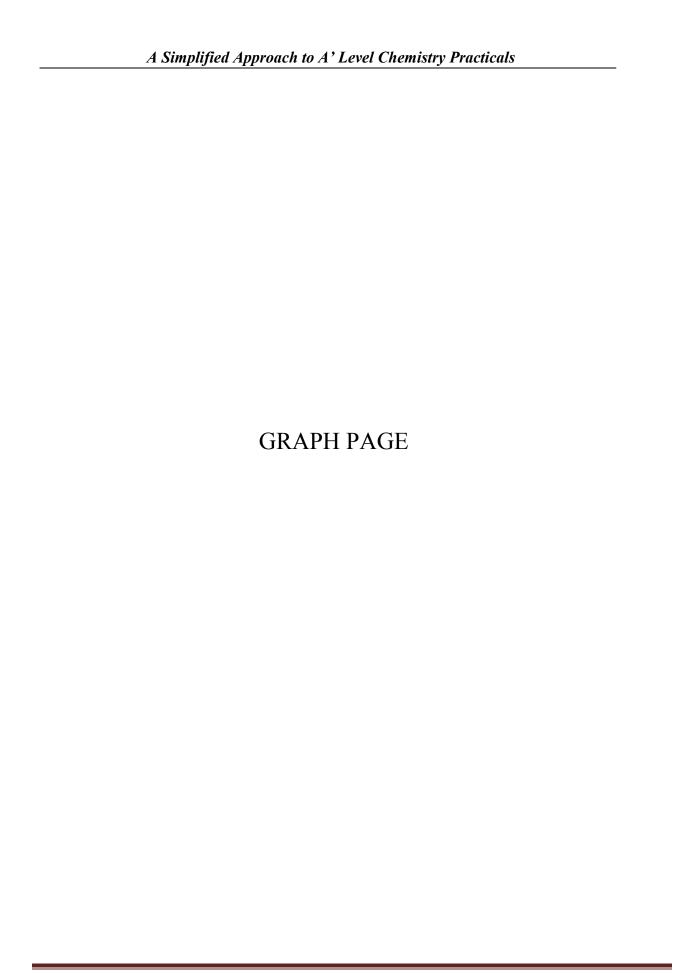
- i) Place FA3 into the burette.
- ii) Using a measuring cylinder, measure and transfer 40cm³ of FA2 into a plastic beaker. Measure and record its temperature into Table II below.
- iii) Add 5cm³ of FA3 from the burette. Stir the mixture carefully with a thermometer and record the highest temperature reached by the mixture in Table II below.
- iv) Repeat procedure (iii) at intervals, each time adding an extra 5cm³ as shown in Table IIbelow.

Table II


Volume of FA3 (cm ³)	0	5	10	15	20	25	30
Highest temperature reached (⁰ C)							

Questions

- a) Plot a graph of highest temperature against volume of sulphuric acid added.
- b) Using the graph plotted in (a) above, determine the:


i) volume of sulphuric acid required for the neutralisation of sodium hydroxide
ii) maximum temperature reached at the neutralisation point.

iii) temperature change, ΔT at the neutralisation point.

c) Calculate the concentration of sodium hydroxide in HA2 in moldm ⁻³ .
d) Calculate the molar enthalpy of neutralisation between sulphuric acid and sodium hydroxide in kJmol ⁻¹ .(Density of solution=1gcm ⁻³ , Specific heat capacity of solution = 4.2 Jg ⁻¹ °C ⁻¹)
e) Plot a graph of highest temperature against volume of methanoic acid added.
f) Using the graph plotted in (e) above, determine the:
i) volume of methanoic acid required for the neutralisation of sodium hydroxide
ii) maximum temperature reached at the neutralisation point.
iii) tommorative above AT at the nextendination point
iii) temperature change, ΔT at the neutralisation point.
g) Calculate the enthalpy of neutralisation between methanoic acid and sodium hydroxide in kJmol ⁻¹ .

h) Determine the enthalpy of dissociation of methanoic acid in kJmol ⁻¹ .												
You of GA1 Solid	eriment 10.3.4 are provided with the same which is a solution of Y which is magnesiant required to determine.	0.25M m meta	I coppe al pow	der.						ions by	magno	esium
i) Us and r ii) W beake	edure ing a measuring cyling ecord the initial temper eigh accurately, 1.5g of er. Stir well with a the e end of every 30 second	erature of Mag rmome	of GA gnesiun eter for	1. n meta about	l powde 20 seco	er and a	add it to	the G	A1 solu	tion in	the pla	stic
	Time (s) Temperature (°C)	0	30	60	90	120	150	180	210	240	270	300
a) Plo b) Us rea	etions ot a graph of temperatesing the graph you have action	e plott	ed, det	termine	e the ma				_			⁰ C
	Density of water =1gcn		_			_).			

) C	alculate the:
	i) number of moles of copper(II) ions present in the volume of GA1 used in the experiment.
	ii)mass of magnesium metalused in the displacement reaction. (Mg=24).
	····
	iii) molar enthalpy of displacement of copper(II) ions by magnesium metal.
l)	Outline atleast three (3) assumptions made in this experiment.
	i)
	ii)
	iii)

CHAPTER ELEVEN 11.0 CHEMICAL KINETICS

11.1 Introduction

A wide range of chemical reactions occur at differing rates. In this chapter, however, for experimental purposes, we shall deal with reactions that go to completion within seconds or a few minutes' time.

The rate of a chemical reaction is the change in concentration of (a) reactant(s) or product(s) per unit time. In these experiments, we shall focus on determination of orders of reactions as well as activation energy, Ea of specific reactions. The reciprocal of time, ¹/t gives an indication of the rate of reaction.

Order of a reaction is the sum of the powers to which the concentrations of reactants are raised in an experimental rate equation.

Consider the reaction below with reactants A, B and C reacting to form the products.

$$wA + xB + yC \rightarrow Products$$

Rate of reaction = $k[A]^w[B]^x[C]^y$

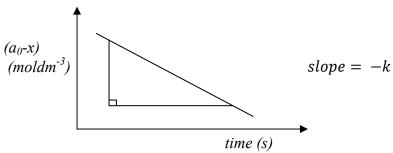
Where [A],[B] and[C] are the molar concentrations of reactants A, B and C; w, x and y are the orders of reaction with respect to A, B and C respectively; kis the rate constant.

Note: Overall order of reaction = (w+x+y)

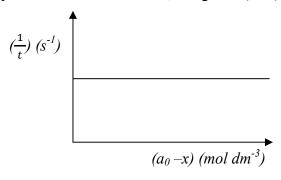
Graphical determination of the Orders of Reactions

If reactants B and C are used in a large excess, then the rate of reaction will depend on the concentration of A and hence the value of **w** which is the order of reaction with respect to reactant A can be obtained experimentally.

a) Zero Order Reaction


A reaction will be proved to be **zero order** with respect to reactant A (the value of w will be zero) if: i)a plot of(a_0 -x) against time, t gives a straight line with a negative gradient whose slope is -**k**.

Where: a_0 = initial concentration of reactant A at t=0

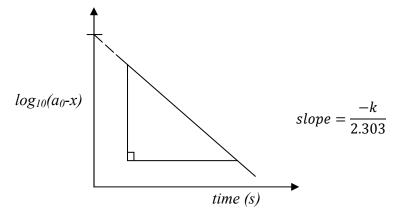

x = amount of reactant A that has disintegrated/reacted.

 (a_0-x) = concentration of reactant A at time t.

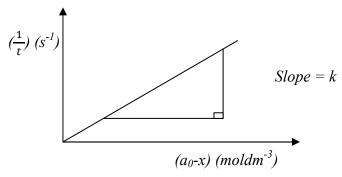
t = time taken.

ii) a plot of the rate of reaction, ¹/t against (a₀-x) gives a straight line parallelto the horizontal axis.

b) First Order Reaction

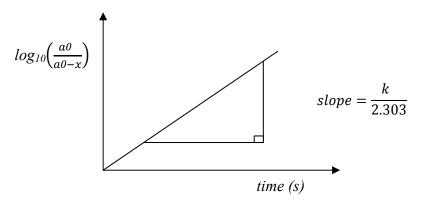

A reaction will be proved to be **first order** with respect to reactant A (the value of w will be 1) if: i) a plot of $\log_{10}(a_0-x)$ against time, t gives a straight line with a negative gradient. The slope of the graph is $\frac{-k}{2.303}$ andthe intercept on the vertical axisis equal to $\log_{10} a_0$.

Where: a_0 = initial concentration of reactant Aat t=0.

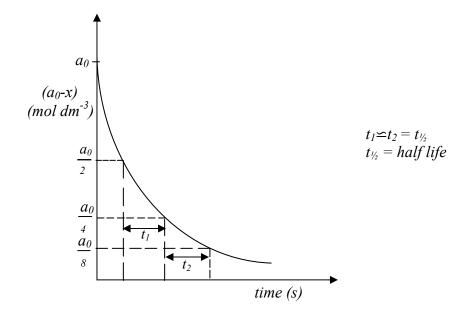

x = amount of reactant A that has disintegrated

 (a_0-x) = concentration of reactant A at time t.

t = time taken.



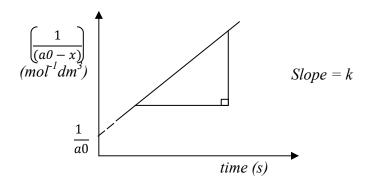
ii) a plot of 1 /t against (a₀-x) gives a straight line through the origin (with apositive gradient). Its slope is equal to the rate constant, **k**.



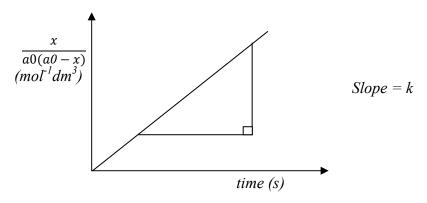
Note: A plot of $(a_0$ -x) against 1 /t gives a graph of a similar shapewhose slope is 1 /k.

iii) a plot of $log_{10}\left(\frac{a_0}{a_0-x}\right)$ against time, t gives a straight line through the origin with a positive gradient whose slope is $\frac{k}{2.303}$.

iv) a plot of (a_0-x) against time gives a smooth curve with a negative gradient with equal half life.



c) Second Order Reaction


A reaction will be proved to be **second order** with respect to reactant A (the value of w will be 2) if:

i) a plot of $\frac{1}{a0-x}$ against time, t gives a straight line with a positive gradient. The slope of the graph is k and the intercept on the vertical axis is equal to $\frac{1}{a0}$.

Where: a_0 = initial concentration of reactant A at t=0 x = amount of reactant A that has disintegrated $(a_0$ -x) = concentration of reactant A at time t. t = time taken.

ii)a plot of $\frac{x}{a_0(a_0-x)}$ against time gives a straight line through the origin, with a positive gradient whose slope is k.

Note:

- 1) Any other variable that is directly proportional to the one indicated in the graphs above can also be used in plotting. For instance volume of reactant A can be used instead of (a_0-x) while 1 /volume of reactant A can be usedinstead of $\frac{1}{a_0-x}$ and curves of the same shape are obtained as above.
- 2) Similarly, in case the variable on the vertical axis is interchanged with that on the horizontal axis, curves of similar shapes are obtained as above.

11.2 Worked out Examples on Chemical Kinetics

Worked out Example 11.2.1

You are provided with the following:

FA1 which is iodine solution.

FA2 which is 0.5M propanone solution.

FA3 which is 0.01M sodium thiosulphate solution.

FA4 which is 0.5M sodium hydrogenearbonate solution.

1M sulphuric acid.

Starch solution

You are required to determine the order of reaction with respect to iodine in its reaction with propanone in the presence of an acid catalyst.

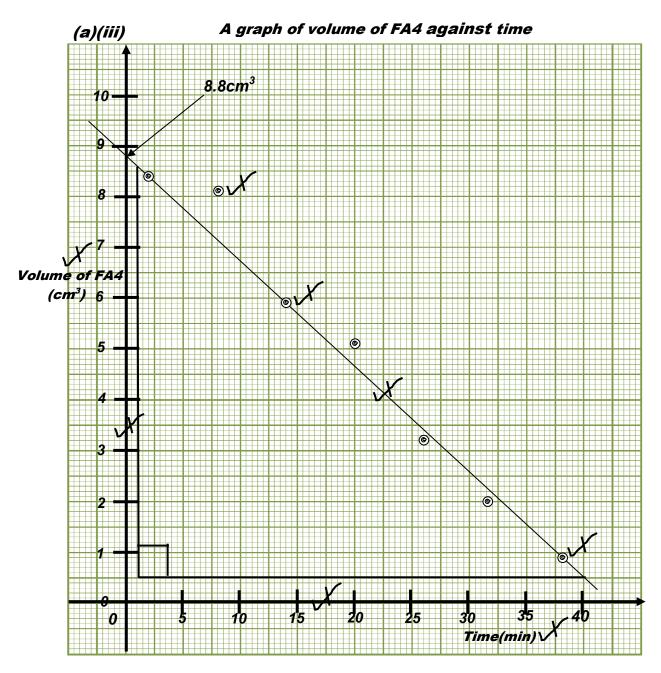
Theory

Aqueous iodine reacts with propanone in the presence of an acid catalyst to form 1-iodopropanone. During the progress of the reaction, when sodium hydrogenearbonate is added to the reaction mixture, the acid catalyst is neutralized and the reaction stops immediately so that some iodine remains unreacted. A portion of the reaction mixture containing the unreacted iodine is pipetted and titrated against standard sodium thiosulphate solution. The volume of sodium thiosulphate used is directly proportional to the concentration of iodine in the pipetted volume of the reaction mixture at any given time. Hence instead of plotting concentration of iodine, volume of sodium thiosulphate can be plotted against time.

Assumption: The propanone and the acid are in large excess such that their concentration will be assumed to have no effect on the rate of reaction.

Procedure

- i) Pipette 25.0cm³ of **FA2** into a conical flask. Using a measuring cylinder, add 25.0cm³ of 1M sulphuric acid followed by 50cm³ of **FA1**, and at the same time, start the stop clock. Shake the mixture gently and label it **FA5**.
- ii) Using another measuring cylinder, transfer 10cm³ of **FA4** into another conical flask. At the end of 2 minutes, pipette 10cm³ of **FA5** into the conical flask containing the 10cm³ of **FA4** (MAKE SURE YOU DO NOT STOP THE STOP CLOCK). Shake the mixture until no more effervescence occurs. Add 1cm³ of starch solution and titrate the mixture with **FA3** from the burette.
- iii) Record your results in the table below.
- iv) Repeatprocedure (ii) above after every 6 minutes for the period of time indicated in the table below.


Time from the start of the reaction (min)	2	8	14	20	26	32	38
Final burette reading (cm ³)	V .	V	22.50	V'	V	V	V -
Initial burette reading (cm ³)	_	_	16.60	_	_	_	
Volume of FA3 used (cm ³)	8.40	8.10	5.90 X	5.10	3.20 X	2.00	0.90

 $(10 \frac{1}{2} \text{ marks})$

Questions

- a) Plot a graph of volume of FA4 against time.
- b) Using the graph you have plotted in (a) above:
 - (i) deduce the order of reaction with respect to iodine. (include a reason for the order of reaction you have stated) ($10 \frac{1}{2}$ marks)

The reaction is zero order with respect to iodine. This is because a graph of volume of FA4 (sodium thiosulphate) against time gives a straight line with a negative gradient. This implies that the rate of reaction is independent of the concentration of iodine. The third implies that the rate of reaction is constant (slope of the graph is constant) irrespective of the concentration of iodine].

(ii) determine the volume of FA4 at t = 0 minutes. 8.8cm³

(iii) determine the value of the rate constant, k and **include its units** given that the slope for the graph you have plotted in (a) above is given by: slope = -k.

Slope = Change in volume of FA4 values = (0.5 - 8.6)cm³ = -8.1cm³ = -0.208 cm³ min⁻¹

Slope = -k; $-0.208 \text{ cm}^3 \text{ min}^{-1} = -k$; $k = 0.208 \text{ cm}^3 \text{ min}^{-1}$

c) Using the answer you have obtained in (b)(ii) above, determine the molar concentration of the iodine solution in FA1.

Solution in TAT:

$$1000cm^{3}$$
 of FA4 contain 0.01 moles of $S_{2}O_{3}^{2-}$
 $8.8cm^{3}$ of FA4 contain $\left(\frac{0.01}{1000} \times 8.8\right)$ moles of $S_{2}O_{3}^{2-}$
 $= 8.8x10^{-5}$ moles of $S_{2}O_{3}^{2-}$
 $I_{2}(aq) + 2S_{2}O_{3}^{2-}(aq) \rightarrow 2I^{-}(aq) + S_{4}O_{6}^{2-}(aq)$
Moles of $I_{2} = (\frac{1}{2}x \text{ moles of } S_{2}O_{3}^{2-}) = (\frac{1}{2}x 8.8x10^{-5}) = 4.4x10^{-5}$
 $50cm^{3}$ of FA1 contain $4.4x10^{-5}$ moles of I_{2}
 $1000cm^{3}$ of FA1 contain $\left(\frac{4.4x10^{-5}}{50} \times 1000\right)$ moles of I_{2}
 $= 8.8x10^{-4}$ moles of I_{2} per dm^{3}

Worked out Example 11.2.2

You are provided with the following:

FA1 which is 0.1M hydrogen peroxide solution

FA2 which is 0.06M sodium thiosulphate

FA3 which 0.1M potassium iodide solution acidified with sulphuric acid

Starch solution

You are required to investigate the rate of reaction between hydrogen peroxide and potassium iodide and to determine the order of reaction with respect to hydrogren peroxide.

Theory

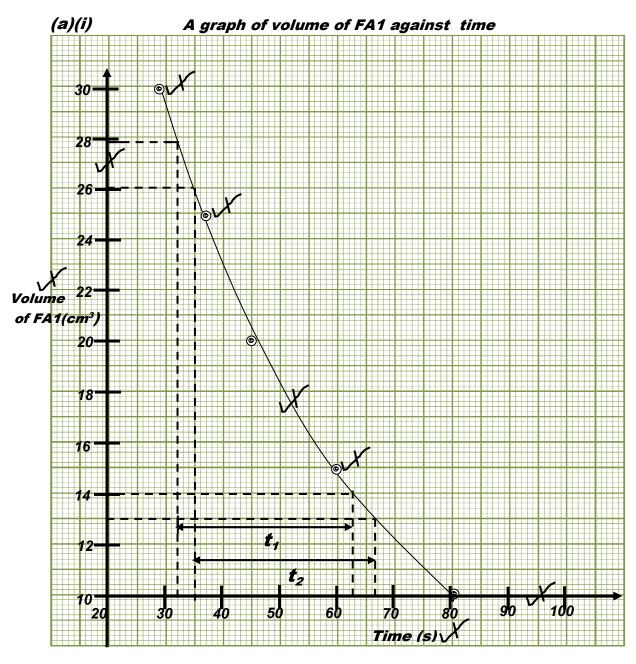
Hydrogen peroxide reacts with acidified potassium iodide solution to liberate aqueous iodine.

The liberated iodine then reacts with thiosulphate ions according to the equation below.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I(aq) + S_4O_6^{2-}(aq)$$

Since the iodine is liberated in excess, once all the thiosulphate ions available have reacted with iodine, the unreacted iodine then combines with the starch solution in the reaction mixture to form the blue-black starch-iodine complex. Hence appearance of the blue colour in the reaction mixture is an indication that all the sodium thiosulphate has reacted with iodine (the reaction between the two is complete).

Procedure


- i) Using ameasuring cylinder, transfer 25cm³ of FA3 into a conical flask.
- ii) Add 15cm³ of FA2 from the burette followed by addition of 25cm³ of distilled water and then 2cm³ of starch indicator solution using suitable measuring cylinders. Shake gently to mix.
- iii) To the mixture in part (ii) above, add at once 10cm^3 of FA1 and simultaneously start the stop clock. Shake the mixture strongly and continuously until the blue colour appears in the solution. Note and record the time taken for the blue colour to appear in the solution. Record your results in the table below.
- iv)Repeat procedures (i) to (iii), but this time using 15, 20, 25 and 30cm³ of FA1 for experiment 2, 3, 4 and 5respectively as indicated in the table below.

Experiment number	1	2	3	4	5
-------------------	---	---	---	---	---

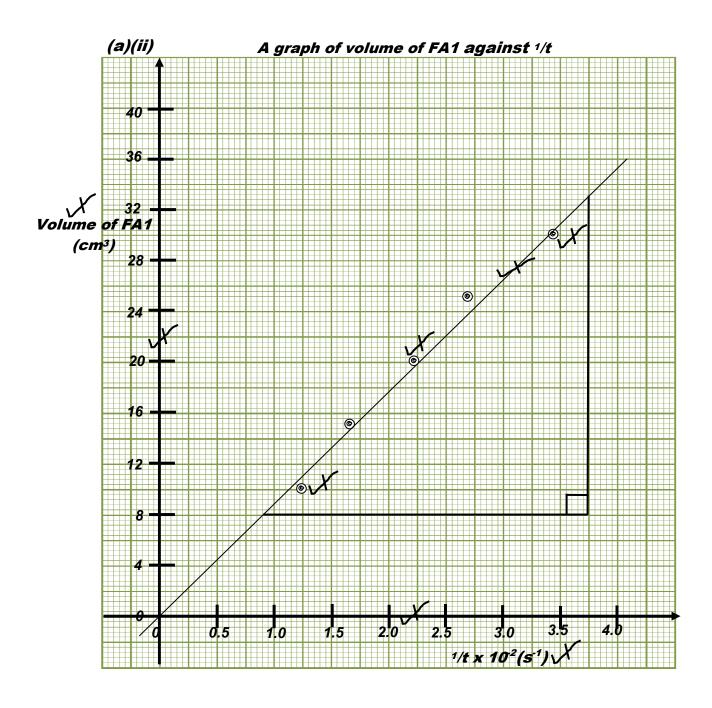
Volume of FA3 (cm ³)	25	25	25	25	25
Volume of FA2 (cm ³)	15	15	15	15	15
Volume of distilled water (cm ³)	25	20	15	10	5
Volume of starch solution (cm ³)	2	2	2	2	2
Volume of FA1 (cm ³)	10	15	20	25	30
log ₁₀ (volume of FA1)	1.000 💉	1.176 X	1.301	1.398	1.477
Time(s)	80.0×	60.0	45.0	37.0 X	29.0
Reciprocal of time, ¹ /t (s ⁻¹)	$1.25x10^{-2}$	$1.67x10^{-2}$	2.22x10 ⁻²	$2.70x10^{-2}$	$3.45x10^{-2}$

Questions

- a) Plot a graph of:
 - i) volume of FA1 against time.
 - ii) volume of FA1 against ¹/t.
 - iii) log₁₀(volume of FA1) against time.

- b) Basing on the graph plotted for (a)(i) above:
 - (i)Deduce the order of reaction with respect to hydrogen peroxide.

Volume of FA1 (cm³)	Time taken (s)	Change in time (s)
From 28	32	$t_1 = (63-32)$
to 14	63	= 31
From 26	35	$t_2 = (67-35)$ $= 32$
to 13	67	= 32


 $t_1 = t_2 = t_{1/2} (wheret_{1/2} = half life)$

The reaction is first order with respect to hydrogen peroxide. This is because half life is independent of the initial volume (initial concentration) of hydrogen peroxide.

(ii)Determine the rate constant, k.

$$t_{1/2} = \frac{t1 + t2}{2} = \frac{31 + 32}{2} = 31.5s$$

$$k = \frac{\ln 2}{t^{1/2}} = \frac{0.693}{31.5 s} = 0.022s^{-1}$$


c) Determine the slope of the graph plotted for (a)(ii) above (include its units).

$$Slope = \frac{Change in volume of FA1 values}{change in \frac{1}{t} values} = \frac{(33.2-8.0)cm3}{(3.75-0.9)x10-2 \ s-1} = \frac{(25.2)cm3}{2.85x10-2 \ s-1} = 884.21 \ cm^3 s$$

d) Basing on the graph you have plotted for (a)(ii) above, deduce the order of reaction with respect to hydrogen peroxideperoxide.

The reaction is first order with respect to hydrogen peroxide. This is because a plot ofvolume of hydrogen peroxide (concentration of hydrogen peroxide) against \(^{1}/t\) gives a straight line through the origin; with a positive gradient.

Note: Since this is a first order reaction, if a graph of $^{1}/t$ against volume/concentration of hydrogen peroxide was plotted, a graph of a similar shape would be obtained, only that its slope would be equivalent to the value of the rate constant, **k**instead of $^{1}/k$.

e) (i) Calculate the slope for the graph plotted in (a)(iii) above and use it to determine the value of the rate constant, k using the expression below:

$$(\frac{-k}{2.303} = slope)$$
 (where $k = Rate\ constant$) (include the units for k).

Slope =
$$\frac{Change \ in \ log10(volume \ of \ FA1) \ values}{change \ in \ time}$$

= $\frac{(1.52-0.95)}{(25-86)s} = \frac{0.57}{-61s} = -9.344x10^{-3}s^{-1}$

$$But\frac{-k}{2.303} = slope$$

$$\therefore \frac{-k}{2.303} = -9.344x10^{-3} s^{-1}$$

$$k = 2.303 \times 9.344x10^{-3} s^{-1}$$

$$k = 2.15x10^{-2} s^{-1}$$

(ii) Using the graph plotted in (a)(iii) above, determine the volume of hydrogen peroxide, V_0 , at t=0, (Intercept on the vertical axis= $log_{10} V_0$)

$$log_{10} V_0 = 1.75$$

 $V_0 = 10^{1.75}$
 $V_0 = 56.23 cm^3$

f) Basing on the graph you have plotted for **(a)(iii)** above, deduce the order of reaction with respect to hydrogen peroxideperoxide.

The reaction is first order with respect to hydrogen peroxide. This is because a plot of log₁₀(volume of hydrogen peroxide) against time gives a straight line with a negative gradient.

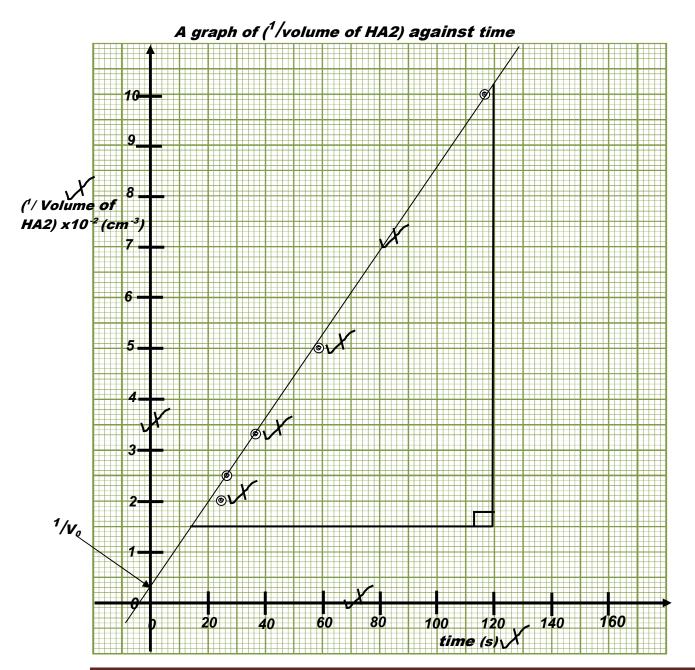
Worked out Example 11.2.3

You are provided with the following: HA1 which is sodium thiosulphate solution HA2 which is hydrochloric acid White piece of paper

You are required to determine theorder of reaction with respect to hydrochloric acidin its reaction with sodium thiosulphate.

Theory

Hydrochloric acid reacts with sodium thiosulphate resulting in precipitation of sulphur. The precipitation of sulphur prevents the viewer from observing a cross or dot on the white sheet of paper.


Procedure

- i) Mark a cross or dot on the white sheet of paper provided with blue or black ink.
- ii) By use of a measuring cylinder, measure and transfer 50cm³ of HA2 into a clean glass beaker followed by 10cm³ of distilled water.
- iii) Add 10cm³ of HA1 and simultaneously start the stop clock.
- iv) Gently shake the beaker for the solution to mix well and place the beaker on top of the white sheet of paper over the cross or dot.
- v) Watch the cross through the solution carefully from above the beaker. Immediately stop the stop clock when the cross or dot disappears and note the time taken for the cross or dot to disappear.
- vi) Pour away the reaction mixture and rinse the beaker thoroughly.
- vii) Repeat procedures (i) to (vi) but this time adding 40, 30, 20 and 10cm^3 of HA2 to the beaker for the 2^{nd} , 3^{rd} , 4^{th} and 5^{th} experiments respectively.

Experiment number	1	2	3	4	5
Volume of HA2 (cm ³)	50	40	30	20	10
Volume of distilled water (cm ³)	10	20	30	40	50
Volume of HA1 (cm ³)	10	10	10	10	10
Time (s)	24.0 X	26.0	36.0	58.0 x	116.0
¹ / volume of HA2 (cm ⁻³)	$2.00x10^{-2}$	$2.50x10^{-2}$	3.33x10 ⁻²	$5.00x10^{-2}$	$10.0x10^{-2}$

Questions

a) Plot a graph of (1/volume of HA2) against time.

Your Guide to the Most Recent Explorations in Chemistry Page 337

b) Basing on the graph plotted for (a) above, deduce the order of reaction with respect to hydrochloric acid.

The reaction is second order with respect to hydrochloric acid. This is because a plot of \(^1\)/volume of HA2 (\(^1\)/concentration of hydrochloric acid) against time gives a straight line with a positive gradient.

c) Determine the slope of the graph plotted for (a) above (indicate its units).

Slope =
$$\frac{\text{Change in (1/volume of HA2) values}}{\text{Change in time}}$$

$$= \frac{(10.2-1.5) \times 10-2 \text{ cm}^{3}}{(120-14)s} = 8.208 \times 10^{-4} \text{ cm}^{-3} \text{s}^{-1}$$

d) (i) Determine the value of the intercept on the vertical axis, $^{1}/V_{\theta}$ (include its units).

$$\frac{1}{V_0} = 0.3x10^{-2} \text{cm}^{-3} = \cancel{\times} 0x10^{-3} \text{cm}^{-3}$$

Note:

- 1) Whenever you are required to determine the value of anintercept on the vertical axis, asyou plot the graph, the readings on the horizontal axis must start from zero.
- 2) Incase an intercept on the horizontal axis is required, as you plot the graph, the readings on the vertical axis must start from zero.
- 3) In case no intercept is required, then as you plot the graph, the readings on both the horizontal andvertical axis do not necessarily have to start from zero.
- (ii) Usethe value of V_{θ} obtained in (d) (i) above to determine the value of V_{θ} .

(where
$$V_{\theta}$$
 = volume of hydrochloric acid at $t=0$)

$$\frac{1}{V_{0}} = 3.0 \times 10^{-3} \text{cm}^{-3}; V_{\theta} = \frac{1}{0.003} V_{\theta} = 333.33 \text{ cm}^{3}$$

Worked out Example 11.2.4

You are provided with the following:

FA1 which is 0.018M potassium manganate(VII) solution prepared using 2M sulphuric acid.

FA2 which is 0.045M oxalic acid

You are required to determine the activation energy of the reaction between potassium manganate(VII) and oxalic acid.

Theory

Oxalate ions from oxalic acid in FA2 react with manganate(VII) ions from acidified potassium manganate(VII) in FA1 according to the following equation.

$$2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

When the reaction is complete, the purple manganate(VII) ions are reduced to very pale pink managanese(II) ions which appear colourless in dilute solution hence the purple solution turns colourless.

The activation energy, Ea of the reaction can be determined basing on the equation below:

$$k = Ae^{-Ea/RT}$$

Taking the natural logarithms,

Ink = In (Ae^{-Ea/RT}){But In
$$xy = (In \ x + In \ y)$$
}
Ink = InA + Ine^{-Ea/RT}{But In $x^y = yIn \ x$ }
Ink = InA + ($-\frac{Ea}{RT}$)Ine{But Ine = 1}
Ink = InA- $\frac{Ea}{RT}$ {But In $x = 2.303log_{10} x$ }
2.303log₁₀ k = 2.303log₁₀ A- $\frac{Ea}{RT}$

Dividing through by 2.303, we have:

$$\log_{10} k = \log_{10} A - \frac{Ea}{2.303RT}$$

On rearranging the equation, we have:

$$\log_{10} k = \log_{10} A - (\frac{Ea}{2.303R}) \frac{1}{T}$$

Where k is the Rate constant, A is the exponential constant, R is the molar gas constant $(R=8.314 \text{ Jmol}^{-1}\text{K}^{-1})$ while T is temperature in Kelvin.

Since k is the rate constant, it is directly proportional to the rate of reaction, which is also directly proportional to $\frac{1}{t}$, hence instead of plotting $\log_{10} k$ against $\frac{1}{T}$, a graph of $\log_{10} (\frac{1}{t})$ can be plotted against $\frac{1}{T}$, whose slope is equal to $\frac{-Ea}{a \text{ graph}}$.

whose slope is equal to
$$\frac{-\text{Ea}}{2.303\text{R}}$$
.
 $\log_{10}(\frac{1}{\text{t}}) = \log_{10}\text{A} - (\frac{\text{Ea}}{2.303\text{R}})\frac{1}{\text{T}}$

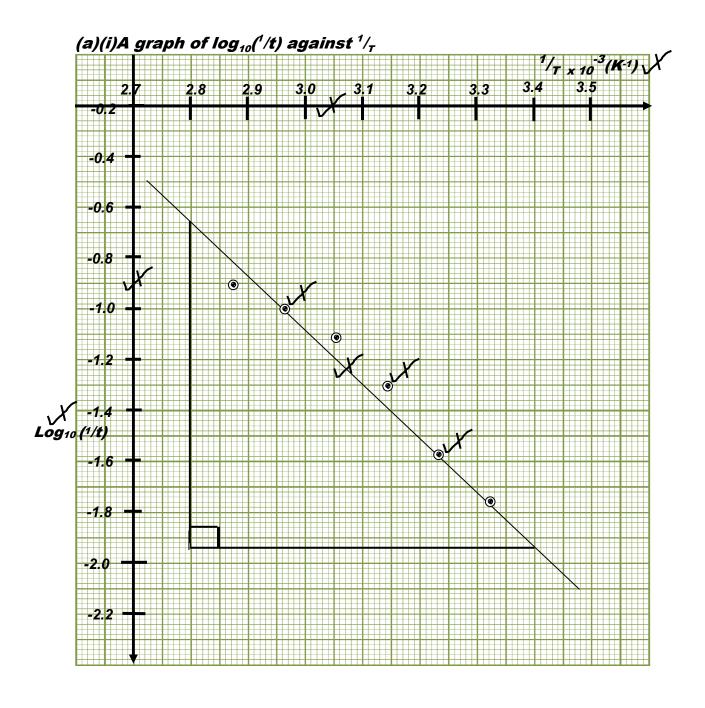
Dividing through by -1 gives:

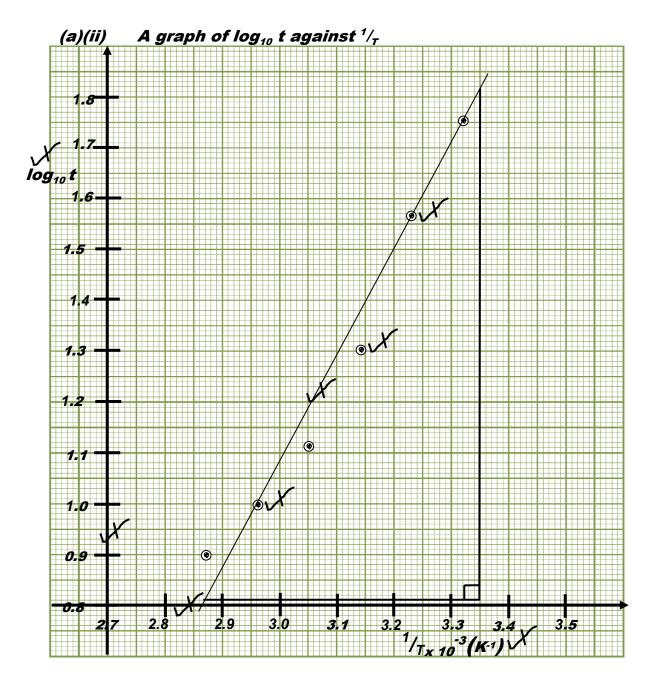
$$-\log_{10}(\frac{1}{t}) = -\log_{10} A + (\frac{Ea}{2.303R}) \frac{1}{T}$$

$$\{But-log_{10}(^{1}/t)=-log_{10}(t^{-1})=log_{10}(t^{-1})^{-1}=log_{10}t\}$$

Therefore,

$$log_{10}t = -log_{10} A + (\frac{Ea}{2.303R}) \frac{1}{T}$$


Procedure


- i) Use the thermometer provided to read and record the room temperature, T_0 in the space provided in the table below.
- ii) Using a measuring cylinder, measure and transfer 30cm³ of FA2 into a clean conical flask.

- iii) By use of another measuring cylinder, measure 30cm³ of FA1 and keep the solution in the measuring cylinder.
- iv) Heat solution FA2 in the glass beaker to a temperature of 75°C.
- v) Remove the hot FA2 solution in the glass beaker from the heat source and immediately add the 30cm³ of FA1 to the hot FA2 solution in the glass beaker and simultaneously start the stop clock.
- vi) Keep shaking the solution gently once in a while and record the time taken for the solution to turn from purple to faint pink.
- vii) Repeat procedures (ii) to (vi) for temperatures of the FA2 solution equal to 65°C, 55°C, 45°C, 35°C and finally room temperature.
- viii) Enter all your results in the table below.

Temperature (⁰ C)	75	65	55	45	35	$T_0 = 28$
Time, t (s)	8.0 X	10.0	13.0 X	20.0 X	37.0 X	57.0 X
Rate, $(\frac{1}{t})(s^{-1})$	$12.5x10^{-2}$	$10.0x10^{-2}$	$7.69x10^{-2}$	$5.00x10^{-2}$	$2.70x10^{-2}$	$1.75x10^{-2}$
$\text{Log }_{10}(\frac{1}{t})$	-0.903	-1.000	-1.114	-1.301	-1.569	-1.757
Log 10t	0.903	1.000 X	1.114	1.301	1.568 X	1.757 X
Absolute					./	_
temperature, T (K)	348 \	338	328	318	310	301
$\left(\frac{1}{T}\right)x10^{-3}(K^{-1})$	2.87	2.96 X	3.05	3.14	3.23 X	3.32

- a) Plot a graph of:
- (i) $\log_{10}(\frac{1}{t})$ against $(\frac{1}{T})$.
- (ii) $\log_{10} t$ against $(\frac{1}{T})$.

b) Using the graph plotted in (a)(i) above, determine the activation energy, E_a of the reaction in \mathbf{Jmol}^{-1} from the expression below:

Slope =
$$\frac{-Ea}{2.303R}$$

$$Slope = \frac{\frac{Change \ in \ log10 \left(\frac{1}{t}\right) values}{Change \ in \left(\frac{1}{T}\right) values}}{= \frac{(-1.94 - -0.66)}{(3.4 - 2.8)x10 - 3\ K - 1}} = \frac{(-1.94 + 0.66)}{(3.4 - 2.8)x10 - 3\ K - 1} = \frac{-1.28}{0.6\ x\ 10 - 3\ K - 1} = -2133.33K$$

$$Slope = \frac{-Ea}{2.303R}; -2133.33K = \frac{-Ea}{2.303\ x\ 8.314\ J\ mol - 1\ K - 1}$$

$$-E_a = -2133.33K\ x2.303x8.314Jmol^{-1}K^{-1}$$

$$E_a = 40847.17Jmol^{-1}$$

(c) Using the graph plotted in (a)(ii) above, determine the activation energy, E_a of the reaction inJmol⁻¹ from the expression below:

Slope =
$$\frac{Ea}{2.303R}$$

$$Slope = \frac{Change in log10 t values}{Change in(\frac{1}{T})values}$$

$$= \frac{(1.82 - 0.81)}{(3.35 - 2.87)x10 - 3 K - 1} = \frac{1.01}{0.48x10 - 3 K - 1} = 2104.17K$$

$$Slope = \frac{Ea}{2.303R}; 2104.17K = \frac{Ea}{2.303 x 8.314 J mol - 1 K - 1}$$

$$E_a = 2104.17K x2.303x8.314 J mol K^{-1}$$

$$E_a = 40288.77 J mol K^{-1}$$

Worked out Example 11.2.5

You are provided with the following:

FA1 which is potassium manganate(VII) solution.

FA2 which is a solution of sodium oxalate prepared using dilute sulphuric acid.

You are required to determine the activation energy, E_a and the exponential constant, A for the reaction between potassium manganate(VII) and sodium oxalate.

Theory

Oxalate ions from the acidified sodium oxalate in FA2 react with manganate(VII) ions from potassium manganate(VII) in FA1 according to the following equation.

$$2MnO_4$$
 (aq) + $16H^+$ (aq) + $5C_2O_4$ (aq) $\rightarrow 2Mn^{2+}$ (aq) + $8H_2O(l)$ + $10CO_2(g)$

When the reaction is complete, the purple manganate(VII) ions are reduced to very pale pink managanese(II) ions which appear colourless in dilute solution hence the purple solution turns colourless.

The activation energy, E_a of the reaction is related to the rate constant, k, absolute temperature, T, exponential constant, A, and the molar gas constant, R as shown by the equation below:

$$\log_{10} k = \log_{10} A - (\frac{Ea}{2.303R}) \frac{1}{T}$$

Dividing through the equation above by -1 gives:

$$-\log_{10} k = -\log_{10} A + (\frac{Ea}{2.303R}) \frac{1}{T}$$

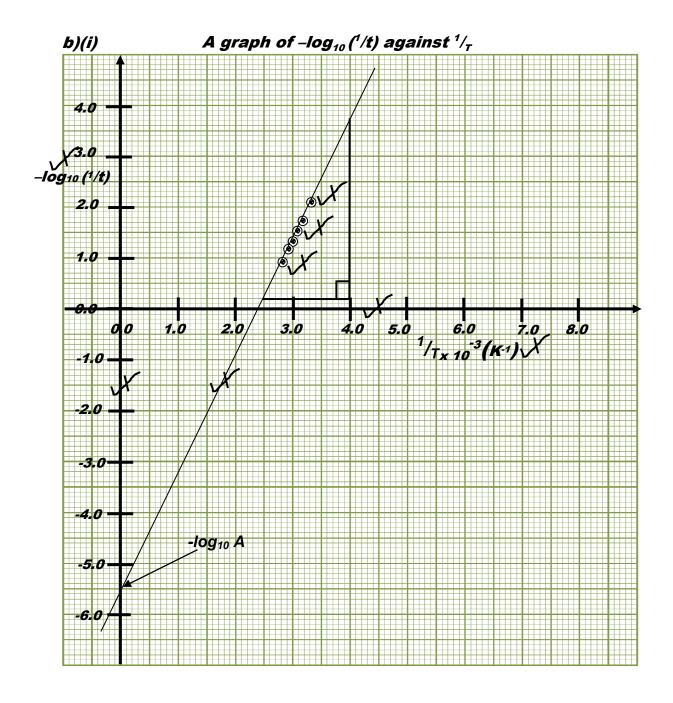
(Note:
$$R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$$
)

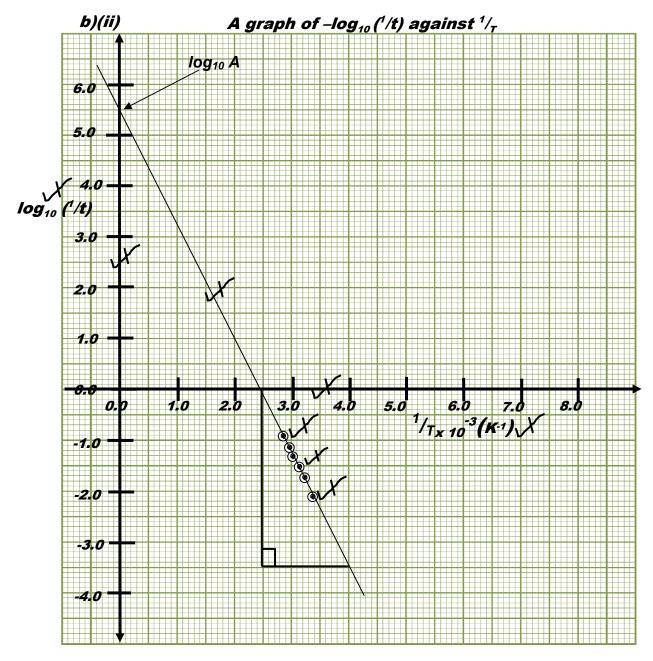
Since k is the rate constant, it is directly proportional to the rate of reaction, which is also directly proportional to $^1/t$, thus instead of plottinglog₁₀k against $\frac{1}{T}$, a graph of $\log_{10}(\frac{1}{t})$ can be plotted against $\frac{1}{T}$, whose slope is equal to $\frac{-Ea}{2.303R}$ and an intercept on the vertical axis equal to $\log_{10}A$.

Alternatively, a graph of $-\log_{10}(\frac{1}{t})$ can be plotted against $\frac{1}{t}$, whose slope is equal to $\frac{Ea}{2.303R}$ and an intercept on the vertical axis equal to $-\log_{10}A$.

Procedure

- (i) Using the thermometer provided, read and record the room temperature in the space in the table.
- (ii) By use of a measuring cylinder, measure 20cm³ of FA2 into a clean conical flask.
- (iii) To the solution in the conical flask, add 20cm³ of FA1 using another measuring cylinder and simultaneously start the stop clock.
- (iv) Shake the contents of the conical flask and leave to stand.
- (v) Note and record the time, t, taken for the solution to turn from purple to colourless.
- (vi) Repeat procedures (ii) to (v), but this time, before FA1 is added, the FA2 solution is first heated to 40, 50, 60, 70 and 80°C.
- (vi) Record your results in the table below.


Temperature (⁰ C)	Room					
	Temperature=26	40	50	60	70	80
Absolute		_				
temperature, T (K)	299	313	323 X			
$\left(\frac{1}{T}\right)\left(K^{-1}\right)$	3.34×10^{-3}	3.19×10^{-3}	$3.09 \times 10^{-}$	3.00×10^{-3}	2.92×10^{-3}	2.83×10^{-3}
1			3			
Time, t (s)	136.0	56.0	36.0 X	22.0	15.0 X	9.0
Reciprocal of time,						
$\left(\frac{1}{t}\right)\left(s^{-1}\right)$	7.35x10 ⁻³	$17.8x10^{-3}$	$27.7x10^{-3}$	$45.4x10^{-3}$	$66.6x10^{-3}$	111x10 ⁻³
$- \operatorname{Log}_{10}(\frac{1}{t})$	2.134 🗴	1.748	1.556	1.342	1.176 X	0.954
$Log_{10}\left(\frac{1}{t}\right)$	-2.134 🗶	-1.748		-1.342 X	-1.176 X	-0.954 X


Ouestions

- (a) Determine the absolute temperature, T from the expression: $T = (^{0}C+273)$
- (b)Plot graphs of:

$$(i)$$
 - $log_{10}(\frac{1}{t})$ against $\frac{1}{T}$.

(ii)
$$\log_{10}(\frac{1}{t})$$
 against $\frac{1}{T}$

- (c) Using the graph you have plotted in (b)(i), determine the:
 - (i) activation energy, E_a , of the reaction in $kJmol^{-1}$ from the expression below:

Slope =
$$\frac{Ea}{2.303R}$$

$$Slope = \frac{Change \ in - log 10 \ (\frac{1}{t}) \ values}{Change \ in \left(\frac{1}{T}\right) values}$$

$$= \frac{(0.2-3.7)}{(2.5-4.0)x10-3 K-1} \times \frac{-3.5}{-1.5x10-3 K-1} = 2333.33K \times S$$

$$Slope = \frac{Ea}{2.303R}; 2333.33K = \frac{Ea}{2.303 x 8.314 J mol-1 K-1}$$

$$E_a = 2333.33K x2.303x8.314 J mol^{-1} K^{-1}$$

$$= 44676.601 J mol^{-1}$$

$$= \frac{44676.601 J mol^{-1}}{1000} = 44.677 kJ mol^{-1}$$

(ii) value of the exponential constant, A. (Intercept on the vertical axis = $-log_{10}A$).

$$-log_{10}A = -5.5$$

$$log_{10}(^{1}/A) = -5.5$$

$$10^{5.5} = \frac{1}{A}; 10^{-5.5}A = 1; A = (10^{-5.5})^{-1}; A = 10^{5.5}; A = 3.16x10^{5}$$

- d) Using the graph you have plotted in (b)(ii), determine the:
 - (i) activation energy, E_a, of the reaction in **kJmol**⁻¹ from the expression below:

Slope =
$$\frac{Ea}{2.303R}$$

$$Slope = \frac{Change in log 10 \left(\frac{1}{t}\right) values}{Change in \left(\frac{1}{T}\right) values}$$

$$= \frac{(0.0-3.5)}{(2.5-4.0)x10-3 K-1} = \frac{-3.5}{-1.5x10-3 K-1} = 2333.33K$$

$$Slope = \frac{Ea}{2.303R}; 2333.33K = \frac{Ea}{2.303 x 8.314 J mol^{-1} K^{-1}}$$

$$E_a = 2333.33K x2.303 x 8.314 J mol^{-1} K^{-1}$$

$$= 44676.601 J mol^{-1}$$

$$= \frac{44676.601 J mol^{-1}}{1000} = 44.677 kJ mol^{-1}$$
(ii) value of the exponential constant, A. (Intercept on the vertical axis = $log_{10} A$) $log_{10} A = 5.5$ λ

$$A = 10^{5.5}; A = 3.16x10^{5} \lambda$$

Reminder:

- 1) Whenever you are required to determine the value of anintercept on the vertical axis, as you plot the graph, the readings on the horizontal axis must start from zero.
- 2) Incase an intercept on the horizontal axis is required, as you plot the graph, the readings on the vertical axis must start from zero.
- 3) In case no intercept is required, then as you plot the graph, the readings on both the horizontal and vertical axis do not necessarily have to start from zero.

11.3 Practical Exercises on Chemical Kinetics

Experiment 11.3.1

You are provided with the following:

FA1 which isiodine solution.

FA2 which is 0.4M propanone solution.

FA3 which is 0.01M sodium thiosulphate solution.

FA4 which is 0.8M sodium hydrogenearbonate solution.

1M sulphuric acid.

Starch solution

You are required to determine the:

i) order of reaction with respect to iodine in its reaction with propanone in the presence of an acid catalyst.

ii) rate constant for the reaction.

Theory

Aqueous Iodine reacts with propanone in the presence of an acid catalyst to form a compound known as 1-iodopropanone.

During the progress of the reaction, when sodium hydrogenearbonate is added to the reaction mixture, the acid catalyst is neutralized and the reaction stops immediately so that some iodine remains unreacted. A portion of the reaction mixture containing the unreacted iodine is pipetted and titrated against standard sodium thiosulphate solution. The volume of sodium thiosulphate used is directly proportional to the concentration of iodine in the pipetted volume of the reaction mixture at any given time. Hence instead of plotting concentration of iodine, volume of sodium thiosulphate can be plotted against time (alternatively, the reciprocal of time can be plotted against volume of sodium thiosulphate).

Note: In order to focus on iodine as the reactant of interest, we shall assume that the propanone and the acid are in large excess such that their concentration will be assumed to have no effect on the rate of reaction.

Procedure

- i) Using a measuring cylinder, transfer 20cm³ of **FA1** into a conical flask. Add 20 cm³ of 1M sulphuric acid followed by 40cm³ of **FA2**, and at the same time, start the stop clock. Shake the mixture gently and label it **FA5**.
- ii) Using another measuring cylinder, transfer 10cm³ of **FA4** into another conical flask. At the end of **5 minutes**, pipette 10cm³ of **FA5** into the conical flask containing the 10cm³ of **FA4** (**MAKE SURE YOU DO NOT STOP THE STOP CLOCK**). Shake the mixture until no more effervescence occurs. Add 1cm³ of starch solution and titrate the mixture with **FA3** from the burette.
- iii) Record your results in the table below.
- iv) Repeat procedure (ii) above after every **5 minutes**(i.e. at the end of 10, 15, 20, 25, 30 and 35minutes) as shown in the table below.

Time from the start of the reaction (min)	5	10	15	20	25	30	35
Final burette reading (cm ³)							
Initial burette reading (cm ³)							
Volume of FA3 used (cm ³)							
Questions a)Plot a graph of volume of FA3 against b) Using the graph you have plotted in (a (i) deduce the order of reaction with res (include a reason for the order of reaction)	a) above spect to i	iodine.					
(ii) determine the volume of FA4 at t =	0 minute	es.					
	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
(iii) determine the value of the rate const plotted in (a) above is given by: <i>slop</i>			e its units(the slope	for the g	raph you	have

c	Our of the solution in FA1.	

Experiment 11.3.2

You are provided with the following:

GA1 which is 0.1M hydrogen peroxide solution

GA2 which is 0.06M sodium thiosulphate

GA3 which 0.1M potassium iodide solution acidified with sulphuric acid

Starch solution

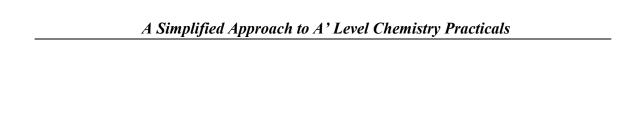
You are required to determine the value of the rate constant and the order of reaction with respect to hydrogren peroxide.

Theory

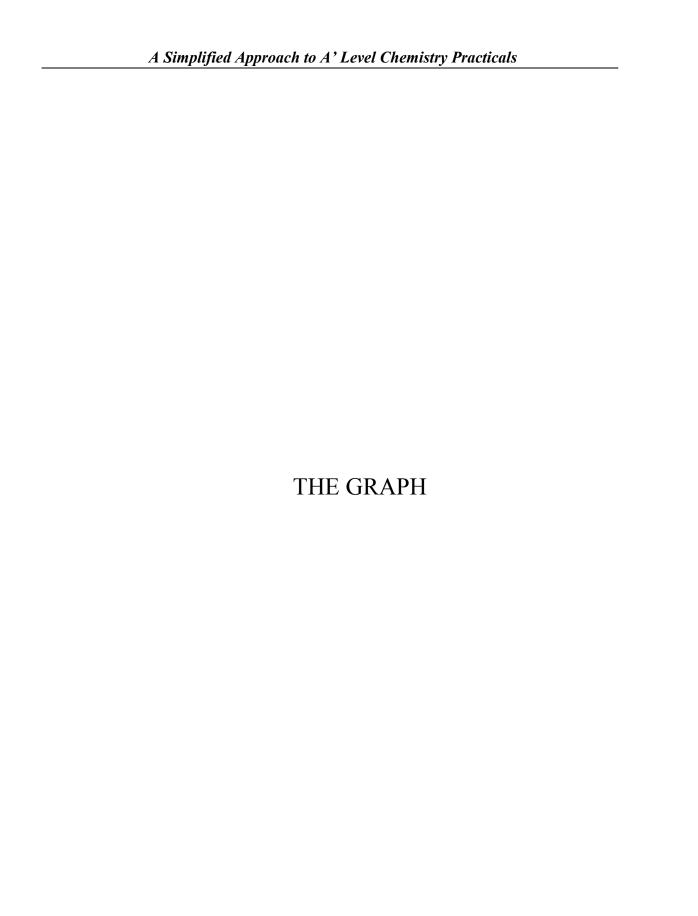
Hydrogen peroxide reacts with acidified potassium iodide solution to liberate aqueous iodine.

The liberated iodine then reacts with thiosulphate ions according to the equation below.

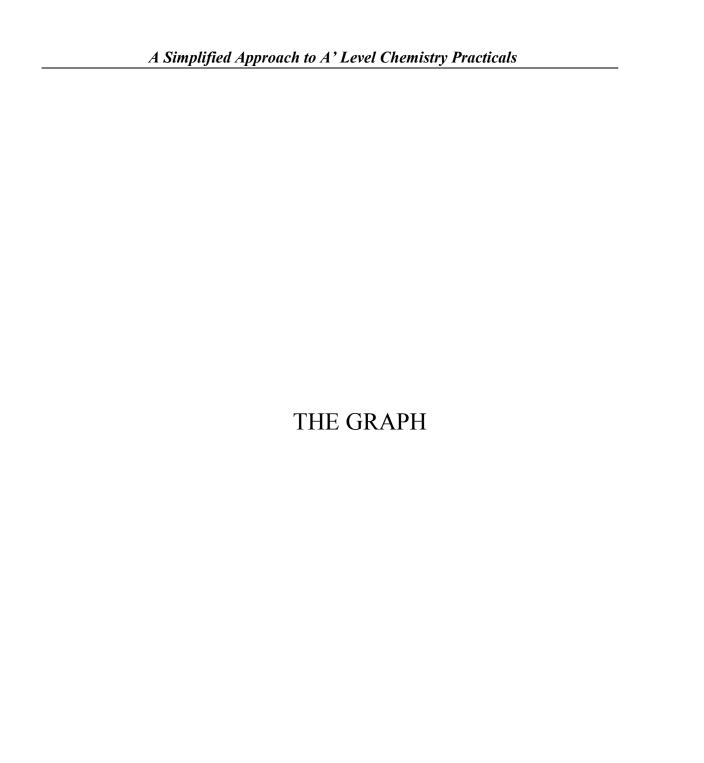
$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2\Gamma(aq) + S_4O_6^{2-}(aq)$$

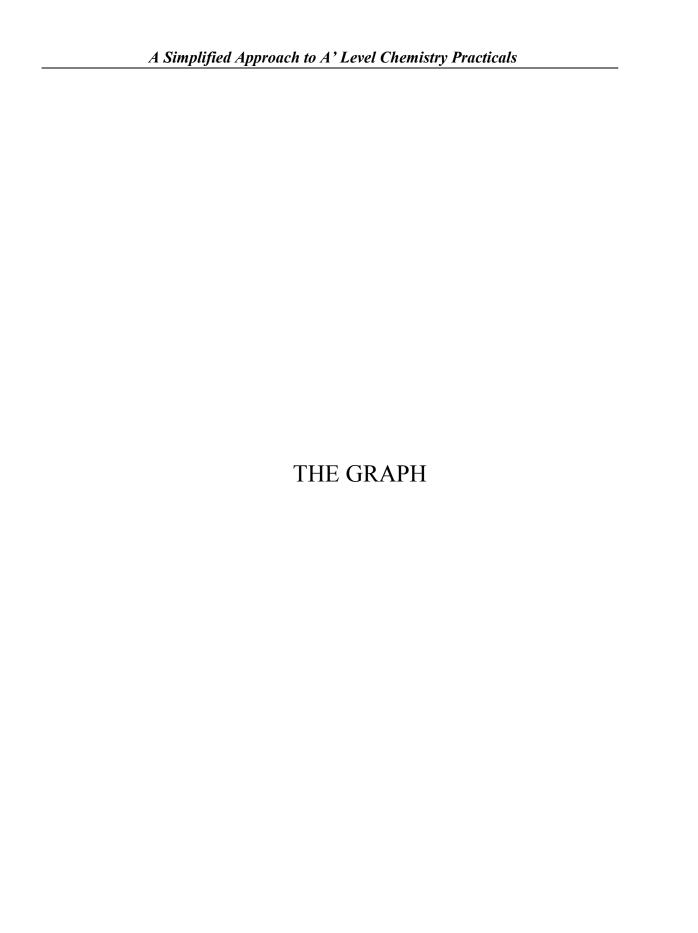

Since the iodine is liberated in excess, once all the thiosulphate ions available have reacted with iodine, the unreacted iodine then combines with the starch solution in the reaction mixture to form the blue-black starch-iodine complex. Hence appearance of the blue colour in the reaction mixture is an indicates that all the sodium thiosulphate has reacted with iodine (the reaction between the two is complete).

Procedure


- (i) Using ameasuring cylinder, transfer 25cm³ of GA3 into a conical flask.
- (ii) Add 15cm³ of GA2 from the burette followed by addition of 25cm³ of distilled water and then 2cm³ of starch indicator solution using suitable measuring cylinders. Shake gently to mix.
- (iii) To the mixture in part (ii) above, add at once 10cm^3 of GA1 and simultaneously start the stop clock. Shake the mixture strongly and continuously until the blue colour appears in the solution. Note and record the time taken for the blue colour to appear in the solution. Record your results in the table below.
- (iv) Repeat procedures (i) to (iii), while adding the volumes of GA1 shown in the table below.

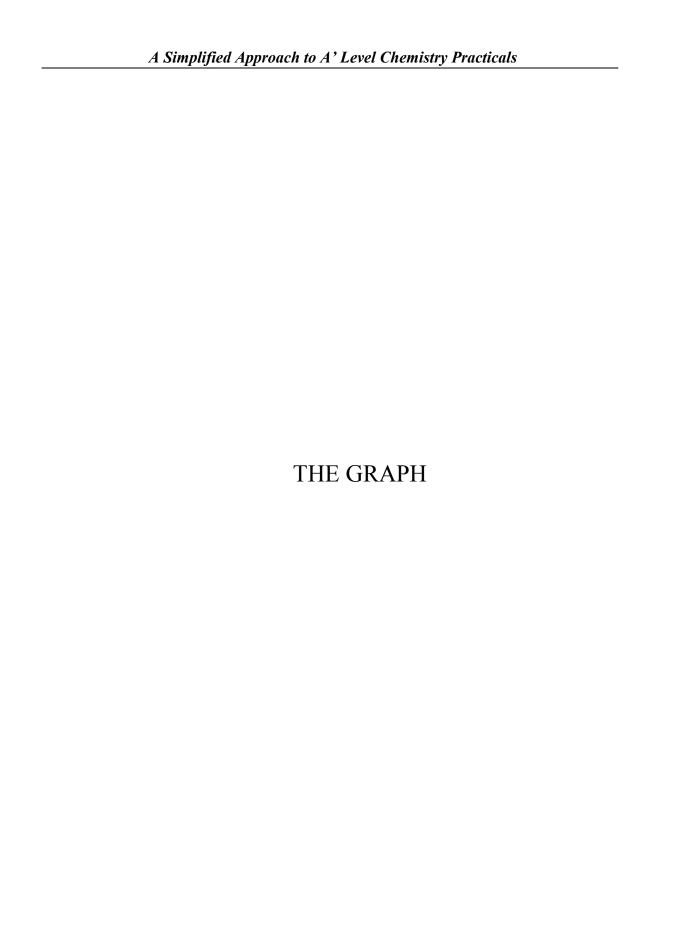
Experiment number	1	2	3	4	5
Volume of GA3 (cm ³)	25	25	25	25	25
Volume of GA2 (cm ³)	15	15	15	15	15
Volume of distilled water (cm ³)	25	20	15	10	5
Volume of starch solution (cm ³)	2	2	2	2	2
Volume of GA1 (cm ³)	10	15	20	25	30
log ₁₀ (volume of GA1)					
Time(s)					
Reciprocal of time, $\frac{1}{t}(s^{-1})$					


Questions
a) Plot a graph of:
i) volume of GA1 against time.
ii) $\frac{1}{t}$ against volume of GA1.
iii) \log_{10} (volume of GA1) against time.
b) Basing on the graph plotted for (a)(i) below:
(i) deduce the order of reaction with respect to hydrogen peroxide.
(ii) determine the rate constant, k by using the half life of the decomposition of hydrogen
peroxide.



THE GRAPH

b)(i) Determine the slope of the graph plotted for part (a)(ii) above (include its units). (ii) Basing on the graph you have plotted for part (a)(ii) above, deduce the order of reaction with respect to hydrogen peroxide


d) (i) Calculate the slope for the graph plotted for part(a)(iii) above and use it to determine the value of the rate constant, k using the expression below:	f
$\binom{k}{2.303}$ = slope) (where k =Rate constant) (include the units for k).	
	•
(ii) Using the graph plotted for part(a)(iii) above, determine the volume of hydrogen peroxide, V_0 at $t=0$. (Intercept on the vertical axis $=log_{10} V_0$)	Ι,
e) Basing on the graph you have plotted for (a)(iii) above, deduce the order of reaction with respect to	
hydrogen peroxide.	
Experiment 11.3.3	
You are provided with the following: HA1 which ishydrogen peroxide solution	
HA2 which is 0.02M potasssium manganate(VII) solution	
HA3 which is1M iron(III) chloride solution.	
2M sodium hydroxide solution	
1M sulphuric acid	
You are required to determine the:	
(i) molar concentration of the hydrogen peroxide solution in HA1. (ii) half life and rate constant for the decomposition of hydrogen peroxide.	
(iii) order of reaction with respect to hydrogen peroxide in its catalytic decomposition reaction.	

Theory

	e decomposition of hydrogen peroxide is catalysed by iron(III) ions provided by oridesolution.	viron(III)
	$_{2}O_{2}(aq)$ FeCl ₃ $2\underline{H}_{2}O(1) + O_{2}(g)$	
	dium hydroxide solution is added to neutralise the acidity of iron(III) chloride wenched/stopped by addition of the acid (sulphuric acid).	while the reaction is
	er a given period of time, t, the hydrogen peroxide that remains undecomposed inst acidified potassium manganate(VII) solution as shown by the equation below.	
2Mno	$InO_4 - (aq) + 6H^+(aq) + 5H_2O_2(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5O_2(g)$	
	e volume of potassium manganate(VII) solution required to reach the end point portional to the amount of undecomposed hydrogen peroxide left after any give	
(i) By to the (ii) P from	By use of a measuring cylinder, transfer 25cm ³ of HA1 into a 250cm ³ volumetre the mark with distilled water. Label this solution HA4. Pipette 10.0cm ³ of HA4 into a conical flask. Add 25cm ³ of 1M sulphuric acid and the burette until the solution in the conical flask just faint turns pink. Repeat ain consistent titre values. Record your results in the table below.	and titrate with HA2
	Volume of pipette used	cm ³
	Table I	
	Final burette reading (cm ³)	
	Initial burette reading (cm ³)	
	Volume of HA2 used (cm ³)	
	lues used to calculate average.	
Aver	erage volume of HA2 used =	cm ³
	(a) Determine the molar concentration of hydrogen peroxide in HA1.	

A Simplified App	proach to 2	4' Level Ch	emistry Pro	acticals		_
Procedure II						
 (i) Pipette 10.0cm³ of HA4 into a co followed by 4 drops of HA3 and im gently. (ii) At the end of 4 minutes, add 25cm hydrogen peroxide) and titrate the mixipink. iii) Record your results in the table below. iv) Repeat procedures (i) to (iii) above as shown in the table below. 	mediately a of 1M so ture with 1	start the staud start the	op clock.O id(the acid ne burette u	ccasionally, stops furthe intil the solu	shake the er decomposition just to	mixture osition of urns fain
Time taken from addition of HA3 and	0	4	8	12	16	20
addition of 1M sulphuric acid (minutes)	U	4	8	12	10	20
Final burette reading (cm ³)						
Initial burette reading (cm ³)						
Volume of HA2 used (cm ³)						
Log ₁₀ (Volume of HA2 used)						
Questions b)Plot a graph of log ₁₀ (Volume of HA2 c) Using the graph you have plotted in (i) determine the half lifeforthe decom	(b) above:		peroxide.			
(ii) rate constant for the decomposition	of hydroge	en peroxide				

(ii) deduce the order of reaction with respect to hydrogen peroxide in its catalytic decomposition reaction. (Include a reason for the order of reaction you have stated).

Experiment 11.3.4

You are provided with the following:

FA1 which is hydrochloric acid

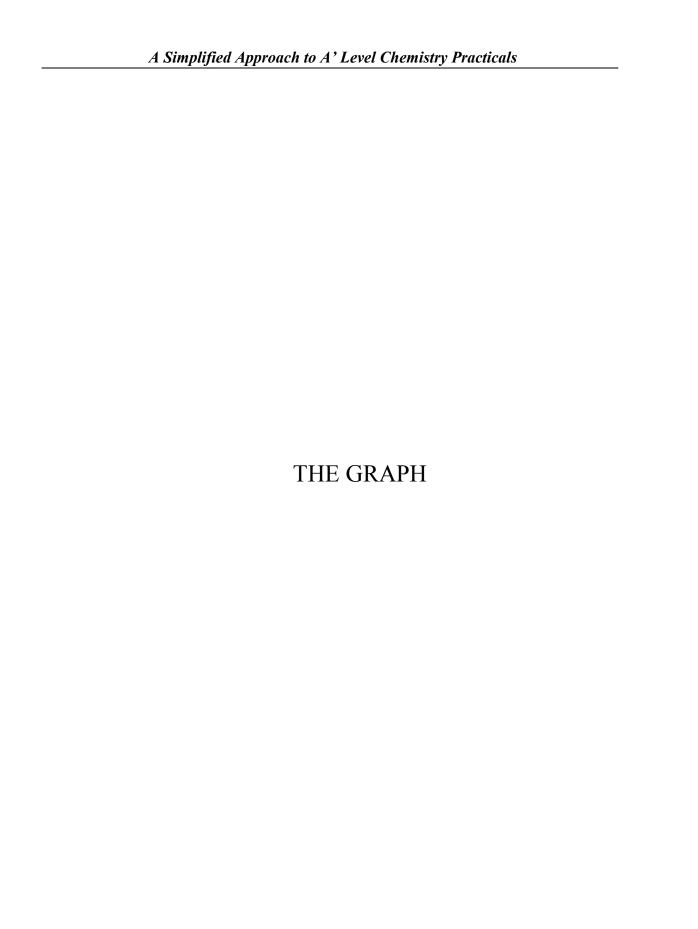
FA2 which is sodium thiosulphate solution

White piece of paper

You are required to determine theorder of reaction with respect to hydrochloric acidin its reaction with sodium thiosulphate.

Theory

The reaction between hydrochloric acid and sodium thiosulphate results in precipitation of sulphur. The precipitation of sulphur prevents the viewer from observing a cross or dot on the white sheet of paper provided.


Procedure

- i) Mark a cross or dot on the white sheet of paper provided with blue or black ink. By use of a measuring cylinder, measure and transfer 50cm³ of FA1 into a clean glass beaker. Add 10cm³ of FA2 and simultaneously start the stop clock. Gently shake the beaker for the solution to mix well and place the beaker on top of the white sheet of paper over the cross or dot.
- ii) Watch the cross through the solution carefully from above the beaker. Immediately stop the stop clock when the cross or dot disappears and note the time taken for the cross or dot to disappear.
- iii) Record your results in the table below.
- iv) Pour away the reaction mixture and rinse the beaker thoroughly.
- v) Repeat procedures (i) to (iv) but this time adding 40, 30, 20 and 10cm³ of FA1 to the beaker for the 2nd, 3rd, 4th and 5th experiments respectively.

Experiment number	1	2	3	4	5
Volume of FA1 (cm ³)	50	40	30	20	10
Volume of distilled water (cm ³)	10	20	30	40	50
Volume of FA2 (cm ³)	10	10	10	10	10
Time (s)					
¹ / volume of FA1 (cm ⁻³)					

Ouestions

2 destions	
a) Plot a graph of (1/ volume of FA1) against time.	
b) Basing on the graph plotted for (a), deduce the order of reaction with respect to hydrochloric acid	l.
	• • • •

,) Determine the slope of the graph plotted in (a) above (indicate its units).						
			. 1,	1			
	volume of hydroci	hloric acid at t=0)					
V_{θ} (where $V_{\theta} = 1$	volume of hydroc	hloric acid at t=0)		determine the value of			
V_{θ} (where $V_{\theta} = 1$	volume of hydroc	hloric acid at t=0)					
V_{θ} (where $V_{\theta} = 1$	volume of hydroci	hloric acid at t=0)					

Experiment 11.3.5

You are provided with the following:

FA1 which is 0.02M potassium manganate(VII) solution prepared using 2M sulphuric acid FA2 which is 0.05M oxalic acid

You are required to determine the activation energy, E_a for the reaction between oxalic acid and potassium manganate(VII).

Theory

Oxalate ions from oxalic acid in FA2 react with manganate(VII) ions from acidified potassium manganate(VII) in FA1 according to the following equation.

$$2MnO_4^{-1}(aq) + 16H^{+}(aq) + 5C_2O_4^{-2}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

When the reaction is complete, the purple manganate(VII) ions are reduced to very pale pink managanese(II) ions which appear colourless in dilute solution hence the purple solution turns colourless.

The activation energy, Ea can be determined basing on the equation below:

$$k = Ae^{-Ea/RT}$$

Taking the natural logarithms,

Ink = In (Ae^{-Ea/RT}) {But In
$$xy = (In x + In y)$$
}
Ink = InA + Ine^{-Ea/RT} {But In $x^y = yIn x$ }
Ink = InA + $(-\frac{Ea}{RT})$ Ine{But Ine = 1}

Ink = InA-
$$\frac{Ea}{RT}$$
{But Inx = 2.303log₁₀x}
2.303log₁₀ k = 2.303log₁₀A - $\frac{Ea}{RT}$
Dividing through by 2.303, we have:
 log_{10} k = log_{10} A - $\frac{Ea}{2.303RT}$

$$\log_{10} k = \log_{10} A - \frac{2.303RT}{2.303RT}$$

On rearranging the equation, we have:

$$\log_{10} k = \log_{10} A - (\frac{Ea}{2.303R}) \frac{1}{T}$$

Dividing through by -1 gives:

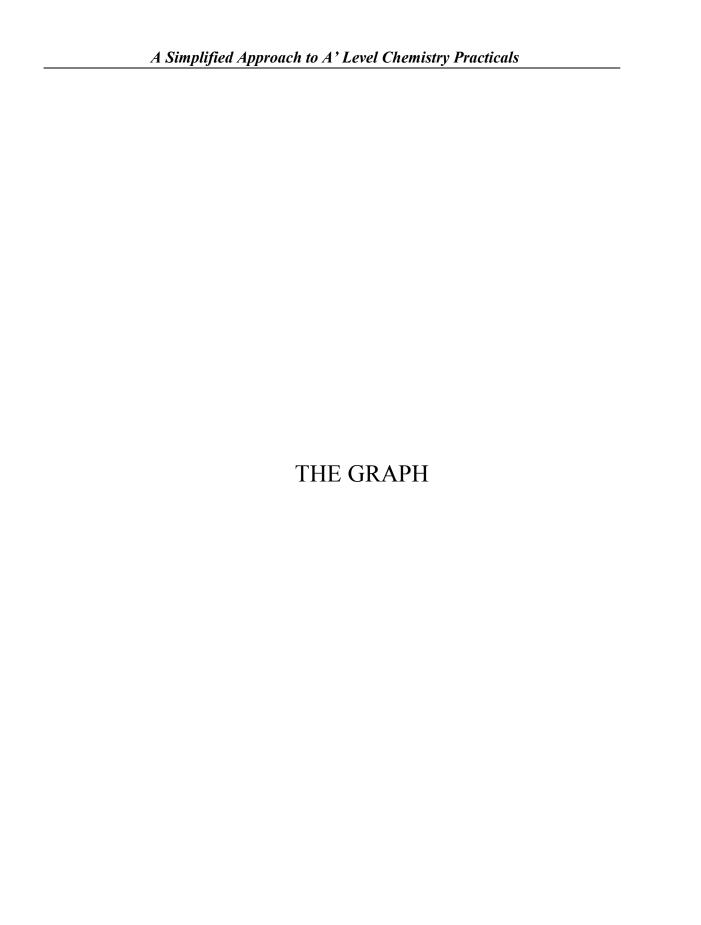
$$-\log_{10} k = -\log_{10} A + (\frac{Ea}{2.303R}) \frac{1}{T}$$

Where k is the Rate constant, A is the exponential constant, R is the molar gas constant (R=8.314 Jmol⁻¹K⁻¹) while T is temperature in Kelvin.

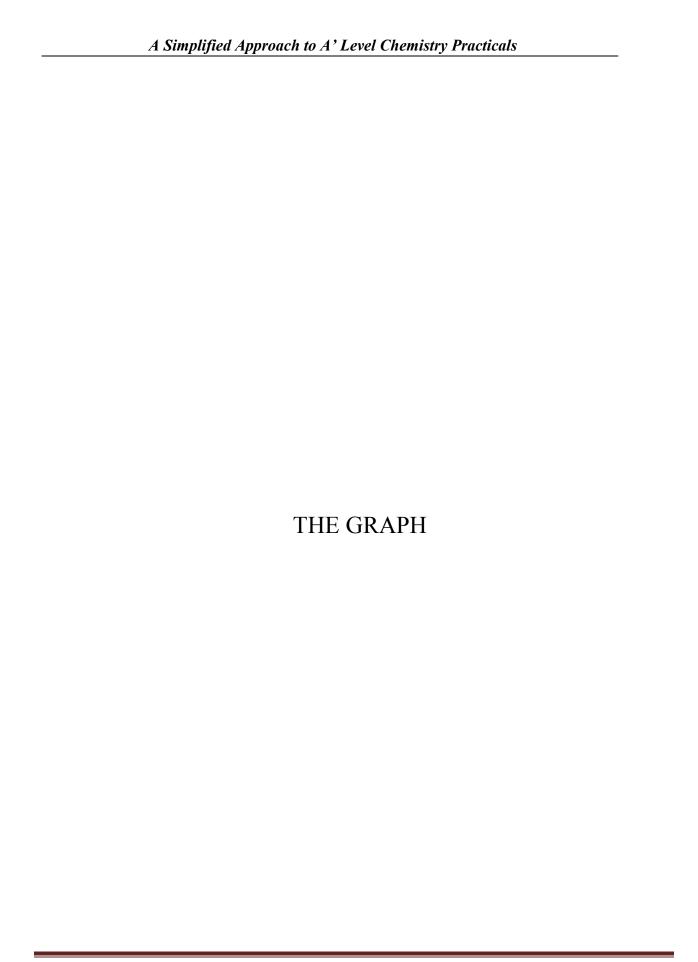
Since k is the rate constant, it is directly proportional to the rate of reaction, which is also directly proportional to $(\frac{1}{t})$, hence instead of plotting $-\log_{10}k$ against $\frac{1}{T}$, a graph of $-\log_{10}(\frac{1}{t})$ can be plotted against $\frac{1}{T}$, whose slope is equal to $\frac{Ea}{2.303R}$.

$$-\log_{10}(\frac{1}{t}) = -\log_{10} A + (\frac{Ea}{2.303R}) \frac{1}{T}$$

Dividing through by -1 gives:


$$\log_{10}(\frac{1}{t}) = \log_{10} A - (\frac{Ea}{2.303R}) \frac{1}{T}$$

- Use the thermometer provided to read and record the room temperature, T_0 in the space provided in the table below.
- ii) Using a measuring cylinder, measure and transfer 20cm³ of FA2 into a clean glass beaker.
- iii) By use of another measuring cylinder, measure 20cm³ of FA1 and keep the solution in that measuring cylinder.
- iv) Heat solution FA2 in the glass beaker to a temperature of 65°C.
- v) Remove the hot FA2 solution in the glass beaker from the heat source and immediately add the 20cm³ of FA1 to the hot FA2 solution in the glass beaker and simultaneously start the stop clock.
- vi) Keep shaking the solution gently once in a while and record the time taken for the the solution to turn from purple to colourless.
- vii) Repeat procedures (ii) to (vi) for temperatures of the FA2 solution equal 55°C, 45°C, 35°C and finally room temperature, T_0 .
- viii) Enter all your results in the table below.


Temperature (⁰ C)	65	55	45	35	$T_0=$
Time, t (s)					
Rate, $\frac{1}{t}$ (s ⁻¹)					
$Log(\frac{1}{t})$					
-Log $(\frac{1}{t})$					
Absolute temperature, T (K)					
$\left(\frac{1}{T}\right)(K^{-1})$					

- a) Plot a graph of $-\log(\frac{1}{t})$ against $\frac{1}{T}$.
- b) By use of the graph plotted in (a) above, determine the:

i) slope of the graph (indicate its units).
ii) activation energy, E_a of the reaction from the expression below. $Slope = \frac{Ea}{2.303R}$

c)	Plot a graph of $\log (\frac{1}{t})$ against $\frac{1}{T}$.
d)	By use of the graph plotted forpart (c), determine the:
	i) slope of the graph (indicate its units).
	ii) activation energy, E_a of the reaction from the expression below. $Slope = \frac{-Ea}{2.303R}$

Experiment 11.3.6

You are provided with the following:

FA1 which ispotassium manganate(VII) solution

FA2 which is a solution of sodium oxalate acidified using dilute sulphuric acid.

You are required to determine the:

- (i) volume, V of FA1 which reacts completely with 25cm³ of FA2.
- (ii) activation energy, Ea for the reaction between sodium oxalate and potassium manganate(VII).
- (iii) exponential constant, A for the reaction.

Theory

Oxalate ions from the acidified sodium oxalate in FA2 react with manganate(VII) ions from potassium manganate(VII) in FA1 according to the following equation.

$$2MnO_4^{-1}(aq) + 16H^{+}(aq) + 5C_2O_4^{-2}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10CO_2(g)$$

When the reaction is complete, the purplesolution turns colourless.

The activation energy, Ea can be determined basing on the equation below:

$$log_{10}k = log_{10}A - \frac{Ea}{2.303RT}$$

 $log_{10} k = log_{10} A - \frac{Ea}{2.303RT}$ Where **k** is the Rate constant, A is the exponential constant, R is the molar gas constant (R=8.314 Jmol⁻¹K⁻¹), T is temperature in Kelvin.

On rearranging the equation above, we have:

$$log_{10}k = log_{10}A - (\frac{Ea}{2.303R})\frac{1}{T}$$

Dividing through by -1 gives:

$$-log_{10}k = -log_{10}A + (\frac{Ea}{2303R})\frac{1}{T}$$

Since k is the rate constant, it is directly proportional to the rate of reaction, which is also directly proportional to $\frac{1}{t}$, hence instead of plotting $-\log_{10}k$ against $\frac{1}{t}$, a graph of $-\log_{10}(\frac{1}{t})$ can be plotted against $\frac{1}{T}$, whose slope is equal to $\frac{Ea}{2.303R}$ and intercept on the vertical axis of $-\log_{10} A$ as shown by the equation below.

$$-log_{10}(\frac{1}{t}) = -log_{10}A + (\frac{Ea}{2.303R})\frac{1}{T}$$

$${Note:-log_{10}(^{1}/t)=log_{10}t}$$

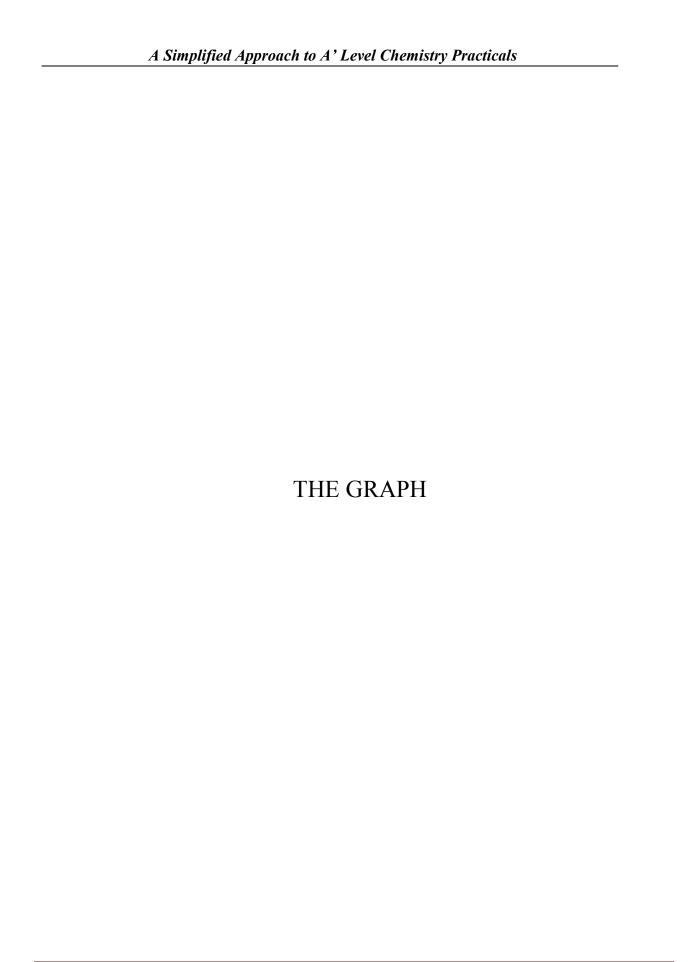
Therefore,

$$log_{1\theta}t = -log_{1\theta}A\left(\frac{Ea}{2.303R}\right)\frac{1}{T}$$

Procedure I

- (i) Using a measuring cylinder, transfer 25cm³ of FA2 into a clean conical flask.
- (ii) Heat the FA2 solution in the conical flask to a temperature of 80°C and titrate the hot solution immediately with FA1 from the burette until the end point is reached.
- (iii) Repeat procedures (i) to (ii) until you obtain consistent results. Record your results in table 1 below.

al burette reading (cm ²	3)		
	<u></u>		
me of FA1 used (cm ³)	()		
		l .	
I to calculate average.			


Procedure II

- (i) Use the thermometer provided to read and record the room temperature, T_R in the space provided in the table below.
- (ii) Run 25cm³ of FA2 from the burette into a clean conical flask and heat the solution to a temperature, p=80^oC.
- (iii)By use of a measuring cylinder, add Vcm³ of FA1 to the hot solution in the conical flask and simultaneously start the stopclock (or stop watch).
- (iv) Shake the contents of the conical flask and once to mix and leave to stand.
- (v) Note and record the time, t, taken for the solution to turn colourless.
- (vi) Repeat procedures (ii) to (v) for the values of temperature, p=70, 60, 50, 40° C and room temperature, T_R .
- (vii) Record your results in table II below.

Table II

1 4010 11						
Temperature, P (⁰ C)	80	70	60	50	40	Room
						temperature, $T_R = \dots$
Absolute temperature, T(K)						
$\left(\frac{1}{T}\right)(K^{-1})$						
Time, t (s)						
Log ₁₀ t						

- a) Complete the table above table by filling in the following:
 - (i) Absolute temperature, T using the formula: T=(p+273).
 - (ii) Reciprocal of T.
 - (iii) Log₁₀ t.
- b) Plot a graph of $\log_{10} t$ against $\left(\frac{1}{T}\right)$.

c) By use of the graph plotted for part (b) above, determine the: i) slope of the graph (indicate its units).							
•••••							
	vation energy, E_a of $=\frac{Ea}{2.303R}$	f the reaction in kJm	ol ⁻¹ from the expres	sion below.			

CHAPTER TWELVE 12.0 COLLIGATIVE PROPERTIES

12.1 Introduction

A Colligative property is a physical property of a dilute solution which depends on the number of moles of a non-volatile solute dissolved in a fixed mass of a solvent but is independent of its chemical nature.

Examples of colligative properties include:

- Relative lowering of vapour pressure.
- Elevation in boiling point.
- Depression in freezing point.
- Osmotic pressure.

Colligative properties are used in determination of relative formula masses of non-volatile solutes. Nevertheless, using colligative properties to determine relative formula masses of solutes has the following limitations:

- i) The solution should be dilute.
- ii) The solute particles should not dissociate within the solvent.
- iii) The solute particles should not associate within the solvent.
- iv) The solute particles should not react with the solvent particles.
- v) The solute should be non-volatile.

12.2 Worked Out Examples on Colligative Properties

Worked Out Example 12.2.1

You are provided with the following:

CompoundX

CompoundY

You are required to determine the relative formula mass of Compound Y using the depression in freezing point method.

Procedure

- i) Weigh accurately 6.2g of substance X into a clean boiling tube.
- ii) Immerse the boiling tube containing substance X into a beaker of boiling water and heat until substance X melts.
- iii) Insert the thermometer into liquid X and continue heating to 95°C.
- iv) Remove the boiling tube from the boiling water in order to allow it to cool in air and immediately start the stop clock (or stop watch).
- v) Read and record the temperature of the liquid every after one minute and record the results in the table below.
- vi) Weigh accurately 1.0g of substance Y and add it to the boiling tube containing substance A.
- vii) Immerse the mixture into the beaker containing boiling water until the mixture melts. Continue heating until the molten mixture is at 95°C.

- viii) Remove the boiling tube from the boiling water to allow the mixture to cool in air and immediately start the stop clock(or stop watch).
- ix) Read and record the temperature of the mixture every after one minute and record the results in the table below.

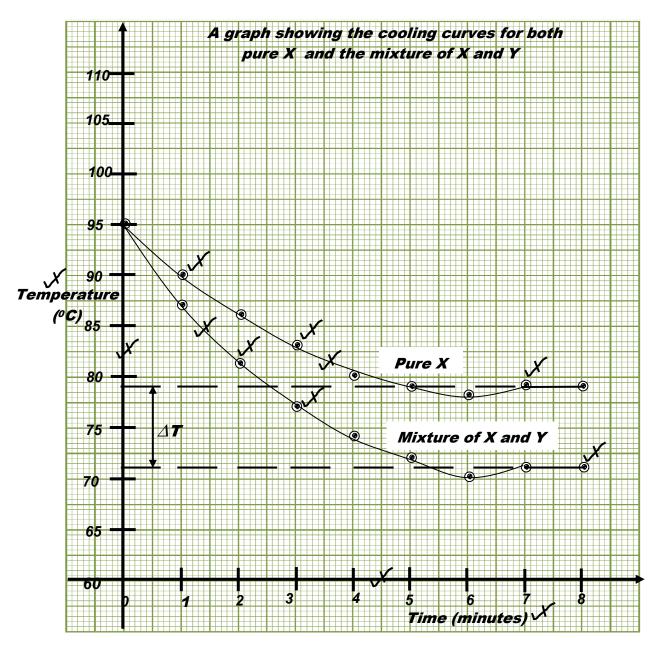

RESULTS Mass of beaker + substance X	46.2	g
Mass of empty beaker	39.8. X	g
Mass of substance X	6.4. X	g
Mass of beaker + substance Y	40.8. 	g
Mass of empty beaker	39.8 X	g
Mass of substance Y	1.0	g

TABLE OF RESULTS

TABLE OF RESCETS										
Time (minutes)	0	1	2	3	4	5	6	7	8	
Temperature of pure X (⁰ C)	95.0	QQ.0	86.0 x	83.0	80.0	79.0	78.0 _x	79.0	79.0x	_
Temperature of mixture of X and $Y(^{0}C)$	95.0x	87.0	81.0	77.0	74.0	72.0 _x	70.0x	71.0	71.0 x	_

Question

a) Plot on the same axes, the cooling curves of both pure X and the mixture of X and Y.

a) By use of the graph you have plotted in (a) above, determine the:

1) freezing point of pure substance X.
79.0°C ×
ii) freezing point of the mixture of substances X and Y.
71.0°C.X
iii) depression in freezing point of substance X caused by 1.0g of substance Y.
$\Delta T = (79.0-71.0)^{\theta} C$ $= 8.0^{\theta} C$
$= 8 \theta^0 C$

b) Relative formula mass of substance Y.

6.2g of substance X dissolve 1.0g of substance Y.
$$1000gof substance X dissolve \left(\frac{1.0}{6.2} \times 1000\right) g \text{ of substance Y.}$$

$$= 161.29g \text{ of substance Y.}$$

$$8^{0}$$
C is the depression in freezing point caused by $161.29g$ of Y.
 6.94^{0} C is the depression in freezing point caused by: $\left(\frac{161.29}{8}x 6.94\right)g$ of substance Y.
 $=139.92$ g of substance Y
Relative formula mass of substance Y=139.92

12.3 Practical Exercises on Colligative Properties

Experiment 12.3.1

You are provided with the following:

Substance A

Substance **B**

You are required to determine the relative formula mass of substance B using the depression in freezing point method.

Procedure

- i) Weigh accurately 6.6g of substance A into a clean boiling tube.
- ii) Immerse the boiling tube containing substance A into a beaker of boiling water and heat until substance A melts.
- iii) Insert the thermometer into liquid A and continue heating to 95°C.
- iv) Remove the boiling tube from the boiling water in order to allow it to cool in air and immediately start the stop clock (or stop watch).
- v) Read and record the temperature of the liquid every after one minute and record the results in the table below.
- vi) Weigh accurately 1.1g of substance B and add it to the boiling tube containing substance A.
- vii) Immerse the mixture into the beaker containing boiling water until the mixture melts. Continue heating until the molten mixture is at 95°C.
- viii) Remove the boiling tube from the boiling water to allow the mixture to cool in air and immediately start the stop clock(or stop watch).
- ix) Read and record the temperature of the mixture every after one minute and record the results in the table below.

RESULTS Mass of beaker + substance	e A						g			
Mass of empty beaker	Mass of empty beaker.									
Mass of substance A	g									
Mass of beaker + substance	g									
Mass of empty beaker	g									
Mass of substance B							g			
TABLE OF RESULTS										
Time (minutes)	0	1	2	3	4	5	6	7	8	
Temperature of pure A (⁰ C)										
Temperature of mixture of A and B(⁰ C)										
ii) freezing point of the mixture of su iii) depression in freezing point of su	ıbstanc	ce A ca	used b			stance	В.			
c) Relative formula mass of substance B. (freezing point constant of substance A is										
									•••••	

GRAPH PAGE